传送门

之前看挑战的时候看到一道分桶法的题目,其实我不是很明白分桶法应该怎么写。看到poj后面的讨论版上写着划分树裸题,而我以前就听说过了划分树,就干脆拿来学习一下。在写这篇博客的时候,其实我还是对这个东西不是很明白。在此先mark一下,以便日后再次学习。

划分树是利用模拟快速排序的方法,以树状结构保存信息的数据结构。作用是快速查找区间内第k大的值,我目前学习下来,应该是不能在线操作的。至于划分树怎么写,各位大能菊苣非常多,先贴上一个传送门。

别人的划分树链接

hdu这道题也算是划分树的裸题了吧,就是需要在查询的时候同时保存一下小于等于中位数的数的个数以及其和,比poj的板子题稍微强一点。我也是参考了别人的代码才能够通过的。

附上poj板子题

关于这个划分树模板,我是根据百度百科上的模板修改的,感觉原作者写得挺好的。

/*****************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <map>
#include <set>
#include <ctime>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define offcin ios::sync_with_stdio(false)
#define sigma_size 26
#define lson l,m,v<<1
#define rson m+1,r,v<<1|1
#define slch v<<1
#define srch v<<1|1
#define sgetmid int m = (l+r)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define pb push_back
#define fi first
#define se second const int INF = 0x3f3f3f3f;
const LL INFF = 1e18;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-9;
const LL mod = 1e9+7;
const int maxmat = 10;
const ull BASE = 31; /*****************************************************/ const int maxn = 1e5 + 5;
int a[maxn], s[maxn];
int seg[20][maxn], num[20][maxn];
LL sum[20][maxn];
LL Sum[maxn];
int N, M;
void build(int l, int r, int v) {
sgetmid;
int lm = m - l + 1, lp = l, rp = m + 1;
for (int i = l; i <= m; i ++) lm -= s[i] < s[m];
for (int i = l; i <= r; i ++) {
num[v][i] = i == l ? 0 : num[v][i - 1];
sum[v][i] = i == l ? 0 : sum[v][i - 1];
if (seg[v][i] == s[m]) {
if (lm) {
lm --;
num[v][i] ++;
sum[v][i] += seg[v][i];
seg[v + 1][lp ++] = seg[v][i];
}
else seg[v + 1][rp ++] = seg[v][i];
}
else if (seg[v][i] < s[m]) {
num[v][i] ++;
sum[v][i] += seg[v][i];
seg[v + 1][lp ++] = seg[v][i];
}
else seg[v + 1][rp ++] = seg[v][i];
}
if (l < r) {
build(l, m, v + 1);
build(m + 1, r, v + 1);
}
}
LL suml, numl;
int query(int L, int R, int x, int l, int r, int v) {
if (l == r) return seg[v][l];
int s, ss; sgetmid;
LL tmp = 0;
if (l == L) s = 0, ss = num[v][R], tmp = sum[v][R];
else s = num[v][L - 1], ss = num[v][R] - s, tmp = sum[v][R] - sum[v][L - 1];
if (x <= ss) return query(l + s, l + s + ss - 1, x, l, m, v + 1);
else {
suml += tmp;
numl += ss;
return query(m + L - l - s + 1, m + R - l - s - ss + 1, x - ss, m + 1, r, v + 1);
}
}
LL getans(int l, int r) {
suml = numl = 0;
int k = query(l, r, (r - l) / 2 + 1, 1, N, 0);
LL ans = (LL)k * numl - suml;
suml = Sum[r] - Sum[l - 1] - suml;
numl = r - l + 1 - numl;
ans += suml - numl * (LL)k;
return ans;
}
int main(int argc, char const *argv[]) {
int T, kase = 1;
cin>>T;
while (T --) {
mem(Sum, 0);
scanf("%d", &N);
for (int i = 1; i <= N; i ++) {
scanf("%d", a + i);
s[i] = seg[0][i] = a[i];
Sum[i] = Sum[i - 1] + a[i];
}
sort(s + 1, s + N + 1);
build(1, N, 0);
scanf("%d", &M);
printf("Case #%d:\n", kase ++);
while (M --) {
int l, r;
scanf("%d%d", &l, &r); l ++, r ++;
printf("%I64d\n", getans(l, r));
}
puts("");
}
return 0;
}

hdu 3473 Minimum Sum的更多相关文章

  1. HDU 3473 Minimum Sum(划分树)

    Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  2. HDU 3473 Minimum Sum 划分树,数据结构 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=3473 划分树模板题目,需要注意的是划分树的k是由1开始的 划分树: 参考:http://blog.csdn.ne ...

  3. HDU 3473 Minimum Sum (划分树)

    题意:给定一个数组,有Q次的询问,每次询问的格式为(l,r),表示求区间中一个数x,使得sum = sigma|x - xi|最小(i在[l,r]之间),输出最小的sum. 思路:本题一定是要O(nl ...

  4. HDU 3473 Minimum Sum (划分树求区间第k大带求和)(转)

    题意:在区间中找一个数,求出该区间每个数与这个数距离的总和,使其最小 找的数字是中位数(若是偶数个,则中间随便哪个都可)接着找到该区间比此数大的数的总和 区间中位数可以使用划分树,然后在其中记录:每层 ...

  5. HDU 3473 Minimum Sum 划分树

    题意: 给出一个长度为\(n(1 \leq n \leq 10^5)\)的序列\(a\) 有若干次查询l r:找到一个\(x\)使得\(\sum \limits_{l \leq i \leq r} \ ...

  6. HDOJ 3473 Minimum Sum

    划分树,统计每层移到左边的数的和. Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. 【HDOJ】3473 Minimum Sum

    划分树解.主席树解MLE. /* 3473 */ #include <iostream> #include <sstream> #include <string> ...

  8. hdu 3473 划分树

    Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  9. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

随机推荐

  1. GreenDao关系建表

    关系 在greenDAO,实体涉及使用一对一或一对多的关系.例如,如果要模拟一个1:greenDAOñ关系,你将有一个一对一和一对多的关系.但是,请注意,一对一和一对多的关系不是相互连接,所以你必须同 ...

  2. WEB前端html基础中的各类标签介绍

    2:html中有很多标签,这里列举十几种标签,有它们的用法及在使用过程中的注意事项!

  3. Excel 数据关联

    =INDEX(Sheet2!$A$2:$A$77,MATCH(A4,Sheet2!$C$2:$C$77,0))

  4. Excel图表的基本类型与选择

    图表类型分成4大类:1. 比较 2. 分布 3. 构成 4. 联系 转载自:https://zhuanlan.zhihu.com/peter-zhang-jie

  5. 闲的写写SQL

    /* 新增 */ Create Proc AddData ( ), ), @Values nvarchar(max) ) as declare @Sql nvarchar(max) declare @ ...

  6. chrome的常用快捷键和命令

    常见快捷键 F12 打开Chrome控制台 Ctrl+J 进入"下载内容"页面 Ctrl+H 查看"历史记录"页面 Ctrl+D 将此页加入书签 Ctrl+F ...

  7. js 对多sheet Excel赋值操作

    function ExpExcel(){ var tempStr = ""; var filePath ="" var excelname=ReportFile ...

  8. 在ionic/cordova中使用百度地图插件

    在ionic项目中,如果想实现定位功能,可以使用ng-cordova提供的cordova-plugin-geolocation. 但由于高墙的缘故,国内andorid环境下,此插件不起作用(ios环境 ...

  9. (原创)Xilinx的ISE生成模块ngc网表文件

    ISE中,右击“Synthesize”,选中“Process Properties”,将“Xilinx Specific Options:-iobuf”的对勾取消. 将取消模块的ioBuff,因为模块 ...

  10. Adroid 展开收起效果实现

    Layout <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns ...