Hello World on Impala
Cloudera Impala 官方教程 《Impala
Tutorial》,解说了Impala一些基本操作,但操作步骤前后缺少连贯性,本文节W选《Impala Tutorial》中的部分演示样例,从零開始解说了一个完整演示样例:创建表、载入数据、查询数据。提供了一个入门级教程,通过本文的操作,向Impala说“Hello World”。
本文如果你已经具备了安装好的Impala环境,环境搭建能够參考: CDH5上安装Hive,HBase,Impala,Spark等服务
创建cloudera用户和组
Impala Tutorial中演示样例的登录username为cloudera,但Cloudera Manager 5.0.2 安装时并没有自己主动在主机节点(比如:h1.worker.com)上创建cloudera用户,为了和Impala Tutorial 中演示样例一致, 须要手工创建cloudera用户和组。
以root用户身份登录主机节点(比如:h1.worker.com),先检查下是否存在cloudera用户,运行例如以下的命令:
[root@h1 home]# cat /etc/passwd | grep cloudera
cloudera-scm:x:496:493:Cloudera Manager:/var/run/cloudera-scm-server:/sbin/nologin
上面显示不存在cloudera用户。假设存在,则不须要进行以下的创建用户步骤了。
创建cloudera用户和组,并设置password为cloudera:
[root@h1 home]# groupadd cloudera
[root@h1 home]# useradd -g cloud era cloudera
[root@h1 home]# passwd cloudera
Changing password for user cloudera.an
New password:
BAD PASSWORD: it is based on a dictionary word
Retype new password:
passwd: all authentication tokens updated successfully.
在HDFS上创建/user/cloudera目录
我们须要在HDFS上新建/user/cloudera目录,并将这个目录的全部者改动为cloudera,这须要HDFS的超级用户才有权限执行这些操作。HDFS的超级用户即执行name node进程的用户。宽泛的讲,假设你启动了name node,你就是超级用户。通过Cloudera Manager 5安装环境的超级username为:hdfs
切换到HDFS的超级用户,先检查是否存在 /user/cloudera 目录,假设不存在则创建。
[root@h1 home]# su - hdfs
-bash-4.1$ hdfs dfs -ls /user
Found 7 items
drwx------ - hdfs supergroup 0 2014-06-26 08:44 /user/hdfs
drwxrwxrwx - mapred hadoop 0 2014-06-20 10:10 /user/history
drwxrwxr-t - hive hive 0 2014-06-20 10:13 /user/hive
drwxrwxr-x - impala impala 0 2014-06-20 10:18 /user/impala
drwxrwxr-x - oozie oozie 0 2014-06-20 10:15 /user/oozie
drwxr-x--x - spark spark 0 2014-06-20 10:08 /user/spark
drwxrwxr-x - sqoop2 sqoop 0 2014-06-20 10:16 /user/sqoop2
在HDFS上创建 /user/cloudera 文件夹,设置文件夹的全部者和组为cloudera
-bash-4.1$ hdfs dfs -mkdir -p /user/cloudera
-bash-4.1$ hdfs dfs -chown cloudera:cloudera /user/cloudera
-bash-4.1$ hdfs dfs -ls /user
Found 8 items
drwxr-xr-x - cloudera cloudera 0 2014-06-26 09:05 /user/cloudera
drwx------ - hdfs supergroup 0 2014-06-26 08:44 /user/hdfs
drwxrwxrwx - mapred hadoop 0 2014-06-20 10:10 /user/history
drwxrwxr-t - hive hive 0 2014-06-20 10:13 /user/hive
drwxrwxr-x - impala impala 0 2014-06-20 10:18 /user/impala
drwxrwxr-x - oozie oozie 0 2014-06-20 10:15 /user/oozie
drwxr-x--x - spark spark 0 2014-06-20 10:08 /user/spark
drwxrwxr-x - sqoop2 sqoop 0 2014-06-20 10:16 /user/sqoop2
经过以上的操作已经具备了执行 Impala Tutorial中演示样例的条件。
HDFS上创建装载表数据的文件夹
本节演示怎样创建一些很小的表,适合初次使用的用户实验 Impala SQL 功能。 TAB1 和 TAB2 从 HDFS 文件里加载数据。能够把你想查询的数据放入 HDFS 中。想開始这一过程,先在你的 HDFS 用户文件夹下创建一个或多个子文件夹。每一个表中的数据存放在单独的子文件夹里。这个样例使用 mkdir
中的 -p 选项,这样假设不存在的父文件夹中则自己主动创建。
[root@h1 ~]# su - cloudera
[cloudera@h1 ~]$ whoami
cloudera
[cloudera@h1 ~]$ hdfs dfs -ls /user
Found 8 items
drwxr-xr-x - cloudera cloudera 0 2014-06-26 09:05 /user/cloudera
drwx------ - hdfs supergroup 0 2014-06-26 08:44 /user/hdfs
drwxrwxrwx - mapred hadoop 0 2014-06-20 10:10 /user/history
drwxrwxr-t - hive hive 0 2014-06-20 10:13 /user/hive
drwxrwxr-x - impala impala 0 2014-06-20 10:18 /user/impala
drwxrwxr-x - oozie oozie 0 2014-06-20 10:15 /user/oozie
drwxr-x--x - spark spark 0 2014-06-20 10:08 /user/spark
drwxrwxr-x - sqoop2 sqoop 0 2014-06-20 10:16 /user/sqoop2
[cloudera@h1 ~]$ hdfs dfs -mkdir -p /user/cloudera/sample_data/tab1 /user/cloudera/sample_data/tab2
[cloudera@h1 ~]$
通过以上的操作,就创建了存放TAB1 和 TAB2表数据的文件夹。
csv文件存放到HDFS文件夹
拷贝例如以下的两个.csv文件到本地的文件系统。
tab1.csv:
1,true,123.123,2012-10-24 08:55:00
2,false,1243.5,2012-10-25 13:40:00
3,false,24453.325,2008-08-22 09:33:21.123
4,false,243423.325,2007-05-12 22:32:21.33454
5,true,243.325,1953-04-22 09:11:33
tab2.csv:
1,true,12789.123
2,false,1243.5
3,false,24453.325
4,false,2423.3254
5,true,243.325
60,false,243565423.325
70,true,243.325
80,false,243423.325
90,true,243.325
运行以下的命令将两个 .csv 文件放入单独的 HDFS 文件夹:
[cloudera@h1 testdata]$ pwd
/home/cloudera/testdata
[cloudera@h1 testdata]$ ll
total 8
-rw-rw-r--. 1 cloudera cloudera 193 Jun 27 08:33 tab1.csv
-rw-rw-r--. 1 cloudera cloudera 158 Jun 27 08:34 tab2.csv
[cloudera@h1 testdata]$ hdfs dfs -put tab1.csv /user/cloudera/sample_data/tab1
[cloudera@h1 testdata]$ hdfs dfs -ls /user/cloudera/sample_data/tab1
Found 1 items
-rw-r--r-- 3 cloudera cloudera 193 2014-06-27 08:35 /user/cloudera/sample_data/tab1/tab1.csv
[cloudera@h1 testdata]$ hdfs dfs -put tab2.csv /user/cloudera/sample_data/tab2
[cloudera@h1 testdata]$ hdfs dfs -ls /user/cloudera/sample_data/tab2
Found 1 items
-rw-r--r-- 3 cloudera cloudera 158 2014-06-27 08:36 /user/cloudera/sample_data/tab2/tab2.csv
[cloudera@h1 testdata]$
每一个数据文件的名称不重要。其实,当 Impala 第一次检測数据文件夹的内容时,它觉得文件夹下的全部文件都是表中的数据文件,不管文件夹下有多少文件,不管什么样的文件名称。
要了解你的 HDFS 文件系统中什么文件夹可用,不同的文件夹和文件都有什么权限,运行 hdfs dfs -ls / 并沿着看到的文件夹树一直运行 -ls 操作。
创建表,载入数据
使用 impala-shell 命令创建表,能够用交互式创建,也能够用 SQL 脚本。
以下的样例演示创建了三个表。每一个表中的列都使用了不同的数据类型,如 Boolean 或 integer。 样例还包括了怎样格式数据的命令,比如列以逗号分隔,这样从 .csv 文件导入数据。我们已经有了存放在 HDFS 文件夹树中的包括数据的 .csv 文件,我们给表指定了包括相应 .csv 文件的路径位置。Impala 觉得这些文件夹下的全部文件中的全部数据都是表里的数据。
table_setup.sql 文件包括例如以下内容:
DROP TABLE IF EXISTS tab1;
-- The EXTERNAL clause means the data is located outside the central location for Impala data files
-- and is preserved when the associated Impala table is dropped. We expect the data to already
-- exist in the directory specified by the LOCATION clause.
CREATE EXTERNAL TABLE tab1
(
id INT,
col_1 BOOLEAN,
col_2 DOUBLE,
col_3 TIMESTAMP
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/cloudera/sample_data/tab1'; DROP TABLE IF EXISTS tab2;
-- TAB2 is an external table, similar to TAB1.
CREATE EXTERNAL TABLE tab2
(
id INT,
col_1 BOOLEAN,
col_2 DOUBLE
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/cloudera/sample_data/tab2'; DROP TABLE IF EXISTS tab3;
-- Leaving out the EXTERNAL clause means the data will be managed
-- in the central Impala data directory tree. Rather than reading
-- existing data files when the table is created, we load the
-- data after creating the table.
CREATE TABLE tab3
(
id INT,
col_1 BOOLEAN,
col_2 DOUBLE,
month INT,
day INT
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
运行 table_setup.sql 脚本,使用:
impala-shell -i 172.16.230.152 -f table_setup.sql
操作过程例如以下:
[cloudera@h1 testdata]$ pwd
/home/cloudera/testdata
[cloudera@h1 testdata]$ ll
total 12
-rw-rw-r--. 1 cloudera cloudera 193 Jun 27 08:33 tab1.csv
-rw-rw-r--. 1 cloudera cloudera 158 Jun 27 08:34 tab2.csv
-rw-rw-r--. 1 cloudera cloudera 1106 Jun 27 08:49 table_setup.sql
[cloudera@h1 testdata]$ impala-shell -i 172.16.230.152 -f table_setup.sql
Starting Impala Shell without Kerberos authentication
Connected to 172.16.230.152:21000
Server version: impalad version 1.3.1-cdh5 RELEASE (build )
...
...
Returned 0 row(s) in 0.28s
[cloudera@h1 testdata]$
查看 Impala 表结构
describe tab1;
[cloudera@h1 testdata]$ impala-shell -i 172.16.230.152
Starting Impala Shell without Kerberos authentication
Connected to 172.16.230.152:21000
Server version: impalad version 1.3.1-cdh5 RELEASE (build )
Welcome to the Impala shell. Press TAB twice to see a list of available commands. Copyright (c) 2012 Cloudera, Inc. All rights reserved. (Shell build version: Impala Shell v1.3.1-cdh5 () built on Mon Jun 9 09:30:26 PDT 2014)
[172.16.230.152:21000] > show tables;
Query: show tables
+------+
| name |
+------+
| tab1 |
| tab2 |
| tab3 |
+------+
Returned 3 row(s) in 0.01s
[172.16.230.152:21000] > describe tab1;
Query: describe tab1
+-------+-----------+---------+
| name | type | comment |
+-------+-----------+---------+
| id | int | |
| col_1 | boolean | |
| col_2 | double | |
| col_3 | timestamp | |
+-------+-----------+---------+
Returned 4 row(s) in 6.85s
[172.16.230.152:21000] > quit;
Goodbye
[cloudera@h1 testdata]$
查询 Impala 表
登录impala-shell,运行例如以下的sql语句:
SELECT * FROM tab1;
SELECT * FROM tab2 LIMIT 5;
SELECT tab2.*
FROM tab2,
(SELECT tab1.col_1, MAX(tab2.col_2) AS max_col2
FROM tab2, tab1
WHERE tab1.id = tab2.id
GROUP BY col_1) subquery1
WHERE subquery1.max_col2 = tab2.col_2;
操作过程例如以下:
[cloudera@h1 testdata]$ impala-shell -i 172.16.230.152
Starting Impala Shell without Kerberos authentication
Connected to 172.16.230.152:21000
Server version: impalad version 1.3.1-cdh5 RELEASE (build )
Welcome to the Impala shell. Press TAB twice to see a list of available commands. Copyright (c) 2012 Cloudera, Inc. All rights reserved. (Shell build version: Impala Shell v1.3.1-cdh5 () built on Mon Jun 9 09:30:26 PDT 2014)
[172.16.230.152:21000] > SELECT * FROM tab1;
Query: select * FROM tab1
+----+-------+------------+-------------------------------+
| id | col_1 | col_2 | col_3 |
+----+-------+------------+-------------------------------+
| 1 | true | 123.123 | 2012-10-24 08:55:00 |
| 2 | false | 1243.5 | 2012-10-25 13:40:00 |
| 3 | false | 24453.325 | 2008-08-22 09:33:21.123000000 |
| 4 | false | 243423.325 | 2007-05-12 22:32:21.334540000 |
| 5 | true | 243.325 | 1953-04-22 09:11:33 |
+----+-------+------------+-------------------------------+
Returned 5 row(s) in 2.39s
[172.16.230.152:21000] > SELECT * FROM tab2 LIMIT 5;
Query: select * FROM tab2 LIMIT 5
+----+-------+-----------+
| id | col_1 | col_2 |
+----+-------+-----------+
| 1 | true | 12789.123 |
| 2 | false | 1243.5 |
| 3 | false | 24453.325 |
| 4 | false | 2423.3254 |
| 5 | true | 243.325 |
+----+-------+-----------+
Returned 5 row(s) in 1.30s
[172.16.230.152:21000] > SELECT tab2.*
> FROM tab2,
> (SELECT tab1.col_1, MAX(tab2.col_2) AS max_col2
> FROM tab2, tab1
> WHERE tab1.id = tab2.id
> GROUP BY col_1) subquery1
> WHERE subquery1.max_col2 = tab2.col_2;
Query: select tab2.* FROM tab2, (SELECT tab1.col_1, MAX(tab2.col_2) AS max_col2 FROM tab2, tab1 WHERE tab1.id = tab2.id GROUP BY col_1) subquery1 WHERE subquery1.max_col2 = tab2.col_2
+----+-------+-----------+
| id | col_1 | col_2 |
+----+-------+-----------+
| 1 | true | 12789.123 |
| 3 | false | 24453.325 |
+----+-------+-----------+
Returned 2 row(s) in 1.02s
[172.16.230.152:21000] > quit;
Goodbye
[cloudera@h1 testdata]$
结束语:
本文解说了一个Impala使用的基本演示样例,提供了一个入门指导,很多其它的演示样例參见:Impala Tutorial
本文使用了很多 impala-shell 命令的方法,详细參见 Using the Impala Shell (impala-shell Command)
原创作品,转载请注明出处 http://blog.csdn.net/yangzhaohui168/article/details/35340387
Hello World on Impala的更多相关文章
- 安装Impala
1.默认安装好hadoop并且能正常启动(只需hdfs即可)2.安装如下rpm包(需要root权限 注意顺序) bigtop-utils-0.7.0+cdh5.8.2+0-1.cdh5.8.2.p0. ...
- 《开源大数据分析引擎Impala实战》目录
当当网图书信息: http://product.dangdang.com/23648533.html <开源大数据分析引擎Impala实战>目录 第1章 Impala概述.安装与配置.. ...
- 运行impala tpch
1.安装git和下载tpc-h-impala脚步 [root@ip-172-31-34-31 ~]# yum install git [root@ip-172-31-34-31 ~]# git clo ...
- TPCH Benchmark with Impala
1. 生成测试数据在TPC-H的官网http://www.tpc.org/tpch/上下载dbgen工具,生成数据http://www.tpc.org/tpch/spec/tpch_2_17_0.zi ...
- 使用Hive或Impala执行SQL语句,对存储在HBase中的数据操作
CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ...
- 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作(二)
CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ...
- 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作
http://www.cnblogs.com/wgp13x/p/4934521.html 内容一样,样式好的版本. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据 ...
- Hadoop 之Impala
impala 是基于hive的大数据实时分析查询引擎,直接使用Hive的元数据库metadata意味着impala元数据都存储在hive的metadstore中并且impala兼容hive的 sql解 ...
- 在脚本中刷新impala元信息
刷新impala元信息 impala-shell -q 'invalidate metadata' -i hslave1 impala-shell -q 'select count(*) from p ...
- java通过jdbc连接impala
下载所需jar包:http://www.cloudera.com/downloads/connectors/impala/jdbc/2-5-28.html 选择使用impalajdbc41版本 imp ...
随机推荐
- java基础41 枚举(类)
1.概述 枚举:一些方法在运行时,它需要数据不能是任意的,而必须是一定范围内的值,可以使用枚举解决 2.枚举的格式 enum 类名{ 枚举值 } 例子 package com.dhb.enumerat ...
- 利用sys.dm_db_index_physical_stats查看索引碎片等数据
我们都知道,提高sql server的数据查询速度,最有效的方法,就是为表创建索引,而索引在对数据进行新增,删除,修改的时候,会产生索引碎片,索引碎片多了,就需要重新组织或重新生成索引,以达到索引的最 ...
- sql 修改列名及表名 sp_rename
因需求变更要改表的列名,平常都是跑到Enterprise manager中选取服务器->数据库->表,然后修改表,这样太麻烦了,查了一下,可以用script搞定, 代码如下: EXEC s ...
- SP_attach_db 添加数据库文件
SP_attach_db 用法如下: EXEC SP_attach_db @dbname = N'目标数据库名', //这是你要引入后的数据库名. ...
- Spark(十六)DataSet
Spark最吸引开发者的就是简单易用.跨语言(Scala, Java, Python, and R)的API. 本文主要讲解Apache Spark 2.0中RDD,DataFrame和Dataset ...
- Python3语法详解
一.下载安装 1.1Python下载 Python官网:https://www.python.org/ 1.2Python安装 1.2.1 Linux 平台安装 以下为在Unix & Linu ...
- 数据迁移之Sqoop
一 简介 Apache Sqoop(TM)是一种用于在Apache Hadoop和结构化数据存储(如关系数据库)之间高效传输批量数据的工具 . 官方下载地址:http://www.apache.org ...
- 洛谷P3265 [JLOI2015]装备购买 [线性基]
题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...
- Cobbler图文详解安装及遇到的问题说明
一.介绍 Cobbler是一个使用Python开发的开源项目,通过将部署系统所涉及的所有服务集中在一起,来提供一个全自动批量快速建立linux系统的网络环境, Cobbler提供了DHCP管理,YUM ...
- Java反射机制demo(四)—获取一个类的父类和实现的接口
Java反射机制demo(四)—获取一个类的父类和实现的接口 1,Java反射机制得到一个类的父类 使用Class类中的getSuperClass()方法能够得到一个类的父类 如果此 Class 表示 ...