参考博客:https://blog.csdn.net/my_sunshine26/article/details/72717112

首先看一下定义,来自于百度百科

  LCA(Lowest Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先。

注意:这里某个节点本身也是它的祖先节点。

求最近公共祖先的算法:

1、暴力:每次查询的时间复杂度为O(N)

2、Tarjan(离线)算法:在一次遍历中把所有查询解决,预处理时间复杂度O(nlogn),每次查询时间复杂度O(1),总时间复杂度是O(nlogn+q)

3、倍增算法:利用二分两个节点同时往上走,直到相遇,预处理时间复杂度O(nlogn),每次查询时间复杂度O(logn)

Tarjan(离线)算法

一.Tarjan算法大致实现过程

  1. 先选择一个节点u为根节点,从根节点开始搜索。(标记u已访问过)
  2. 遍历该点u的所有儿子节点v,并标记v已访问过。
  3. 若v还有儿子节点,对v重复ii操作,否则进入下一操作。
  4. 把v合并到u上(并查集)。
  5. 把当前的点设为u,遍历与u有询问关系的节点v。
  6. 如果v在之前已经被访问过,那么u和v的最近公共祖先就是v通过并查集合并后的父亲节点(注意是合并后),即当前的find(v)。
 
 

二.Tarjan算法的伪代码

  

 Tarjan(u)           //根节点u
{
for each(u,v)
{
Tarjan(v); //v还有儿子节点
join(u,v); //把v合并到u上
vis[v]=; //访问标记
}
for each(u,v) //遍历与u有询问关系的节点v
{
if(vis[v])
{
ans=find(v);
}
}
}

三.Tarjan算法的代码

 void Tarjan(int u)
{
vis[u]=;
for(int i=;i<mp[u].size();i++)
{
int v=mp[u][i];
if(vis[v]==)
{
Tarjan(v);
join(u,v);
}
}
for(int i=;i<mp2[u].size();i++)//利用mp2集合来存储查询关系
{
int v=mp2[u][i];
if(vis[v]==)
{
lca[u][v]=find(v);
}
}
}

倍增算法

一、算法铺垫

首先让u和v中较深的一个往上走|depth(u)-depth(v)|步,然后再一起一步步往上走,直到走到同一个节点,就可以在O(depth(u)+depth(v))的时间内求出LCA。

关键在于如何优化向上查找的过程

二.倍增算法的实现过程

分析刚才的算法,两个节点到达同一节点后,不论怎么向上走,达到的显然还是同一节点。利用这一点,我们就能够利用二分搜索求出到达最近公共祖先的最小步数了。

首先我们要进行预处理。对于任意的节点,可以通过fa2[v]=fa[fa[v]]得到其向上走2步到达的顶点,再利用这个信息,又可以通过fa4[v]=fa2[fa2[v]]得到其向上走4步所到的顶点。以此类推,我们可以得到其向上走2^k步所到的顶点fa[v][k],预处理的时间点复杂度为O(nlogn)。

 void init()
{
lg[]=;
for(int i=;i<=n;i++)
lg[i]=lg[i-]+(<<(lg[i-]+)==i);//用来求log2(n)
}
void dfs(int f,int fath)
{
deepth[f]=deepth[fath]+;
fa[f][]=fath;
for(int i=;(<<i)<=deepth[f];i++)
fa[f][i]=fa[fa[f][i-]][i-];
for(int i=;i<mp[f].size();i++)
if(mp[f][i]!=fath)
dfs(mp[f][i],f);
}
int lca(int x,int y)
{
if(deepth[x]<deepth[y])
swap(x,y);
while(deepth[x]>deepth[y])
x=fa[x][lg[deepth[x]-deepth[y]]];
if(x==y)
return x;
for(ll k=lg[deepth[x]];k>=;k--)
if(fa[x][k]!=fa[y][k])
x=fa[x][k], y=fa[y][k];
return fa[x][];
}
 

LCA(最近公共祖先)算法的更多相关文章

  1. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  2. LCA近期公共祖先

    LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...

  3. LCA 近期公共祖先 小结

    LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...

  4. lca 最近公共祖先

    http://poj.org/problem?id=1330 #include<cstdio> #include<cstring> #include<algorithm& ...

  5. LCA(最近公共祖先)模板

    Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...

  6. CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )

    CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...

  7. LCA最近公共祖先 ST+RMQ在线算法

    对于一类题目,是一棵树或者森林,有多次查询,求2点间的距离,可以用LCA来解决.     这一类的问题有2中解决方法.第一种就是tarjan的离线算法,还有一中是基于ST算法的在线算法.复杂度都是O( ...

  8. LCA(最近公共祖先)之倍增算法

    概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...

  9. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

  10. 最近公共祖先算法LCA笔记(树上倍增法)

    Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...

随机推荐

  1. mysql数据库的左连接,右连接,内链接。

    一般所说的左连接,外连接是指左外连接,右外连接.做个简单的测试你看吧.先说左外连接和右外连接:[TEST1@orcl#16-12月-11] SQL>select * from t1; ID NA ...

  2. 如何查看win2003是32位还是64位

    如何查看自己的电脑是32位还是64位 方法如下: 点击开始——运行——输入wmic cpu get addresswidth

  3. 有哪些 Bootstrap 的学习案例?

    bootstrap经典实用案例 bootstrap经典实用案例(非常详细),从菜鸟到高手的过程是艰辛的,你渴望救助.这本教程就是你无言的助手,默默的帮你到永远. 带奋斗一起飞翔,因为有了它,让我拥有理 ...

  4. code first 创建数据库,add-migration update-database

    第一步: 第二步:

  5. Python函数之总结

    ''' 1.什么是函数 函数就是具备某一特定功能的工具 2.为什么用函数 减少重复代码 增强程序的扩展性 增强可读性 3.如何用函数 1.函数的使用原则:先定义后调用(*****) 定义阶段:只检测语 ...

  6. 约束3:default约束

    默认值约束(Default约束)的作用是在执行insert命令时,如果命令没有显式给指定的列赋值,那么把默认约束值插入到该列中:如果在Insert命令中显式为指定的列赋值,那么将该列插入用户显式指定的 ...

  7. JavaScript中的null和undefined

    null :表示无值;undefined : 表示一个未声明的变量,                或已声明但没有赋值的变量,                或一个并不存在的对象属性. ==运算符将两 ...

  8. MGR的debug版本

    debug版本的MGR 相较于 非 debug 版本,  applier性能差距有40倍之多.

  9. linux bash Shell脚本经典 Fork炸弹演示及命令详解

    Jaromil 在 2002 年设计了最为精简的一个Linux Fork炸弹,整个代码只有13个字符,在 shell 中运行后几秒后系统就会宕机: :(){:|:&};: 这样看起来不是很好理 ...

  10. python-我的第一门编程语言

    一.认识python是一个偶然,由于大学不务正业,混迹于各种电脑维修群(本人专业商务经济专业),了解过C.JAVA.HTML5以及世界上最好的编程语言PHP and so on!了解也仅仅是了解. 二 ...