ICDM Winner's Interview: 3rd place, Roberto Diaz
ICDM Winner's Interview: 3rd place, Roberto Diaz
This summer, the ICDM 2015 conference sponsored a competitionfocused on making individual user connections across multiple digital devices. Top teams were invited to submit a paper for presentation at an ICDM workshop.
Roberto Diaz, competing as team "CookieMonster", took 3rd place. In this blog, he shares how he became a Kaggle addict, what he values in a competition, and most importantly, details on his approach to this unique dataset. Congrats to Roberto for achieving his goal of becoming a top 100 Kaggle user!

407 players on 340 teams competed in ICDM 2015: Drawbridge Cross-Device Connections
The Basics
What was your background prior to entering this challenge?
In addition to being a Kaggle addict, I am a researcher at Treelogicworking in the machine learning area. In parallel I work on my PhD thesis at the University Carlos III de Madrid focused on the parallelization of Kernel Methods.

Roberto's Kaggle profile
Do you have any prior experience or domain knowledge that helped you succeed in this competition?
I didn't have any knowledge about this domain. The topic is quite new and I couldn't find any papers related to this problem, most probably because there are not public datasets.
How did you get started competing on Kaggle?
I started on the first Facebook competition a long time ago. A friend of mine was taking part in the challenge and he encouraged me to compete. That caught my initial curiosity so I accessed the challenge's forum and I read a post with a solution that scored quite well on the leaderboard and I thought "I think I can do better than that". At the end I scored 9th on the leaderboard.
For my second challenge (EMC Israel Data science challenge) I was on a team with my PhD mates. We finished 3rd receiving a prize.
After that it was too late for me, I had become an addict.
What made you decide to enter this competition?
The things I value most in a challenge are:
- A conference associated to the challenge: It is a good opportunity to publish your results. For example, my solution in the Higgs Boson Machine Learning Challenge:
DÌaz-Morales, R., & Navia-V·zquez, A. (2015, September). Optimization of AMS using Weighted AUC optimized models. In *JMLR: Workshop and Conference Proceedings*, Vol. 42, pp. 109-127.
- A domain unknown to me: It is the best way to learn about how to work with a different kind of data.
- The need to preprocess and extract the features from raw data to build the dataset: It gives you the chance to use your intuition and imagination.
This challenge looked very interesting to me because all the conditions were met.
Let's Get Technical
What preprocessing and supervised learning methods did you use?
In this challenge we had a list of devices and a list of cookies and we had to tell what cookies belonged to the person using the device.
The most important part was the feature extraction procedure, they had to contain information about the relation between devices and cookies (for example, the number of IP addresses visited by each one and by both of them).
Once I had the features I tried simple supervised machine learning algorithms and complex ones (my winning methodology was Semi-Supervised learning procedure using Gradient Boosting + Bagging) and the score just grew up from 0.865 to 0.88.
What was your most important insight into the data?
A key part of the solution was the initial selection of candidates and the post processing:
- Initial selection: It was not possible to create a training set containing every combination of devices and cookies due to the high number of them. In order to reduce the initial complexity of the problem and to create an affordable dataset, some basic rules were created to obtain an initial reduced set of candidate cookies for every device. The rules are based on the IP addresses that both device and cookie have in common and how frequent they are in other devices and cookies.
- Supervised Learning: Every pattern in the training and test set represents a device/candidate cookie pair obtained by the previous step and contains information about the device (Operating System (OS), Country, ...), the cookie (Cookie Browser Version, Cookie Computer OS,...) and the relation between them (number of IP addresses shared by both device and cookie, number of other cookies with the same handle than the cookie,...).
- Post Processing: If the initial selection of candidates did not find a candidate with enough likelihood (logistic output of the classifier) we choose a new set of candidate cookies selecting every cookie that shares an IP address with the device and we score them using the classifier.
The initial selection of candidates reduces the complexity of the problem and the post processing step find out most of the device/cookie pairs lost by that initial selection strategy.
Were you surprised by any of your findings?
Yes. When I sorted the scores obtained by the classifier for every candidate I saw that if the first score is high and the second is very low, is extremely likely that the first cookie belongs to the device. I made use of this information to create semi-supervised learning procedure updating some features in the training set and retraining the algorithm again with this new information to improve the results.
This picture shows the F05 score and the percentage of devices that fulfill the condition when we match devices and the first cookies candidate when the second candidate scores less than a threshold:
Which tools did you use?
This solution has been implemented in python and uses the external software XGBoost.
The libraries of python used were:
How did you spend your time on this competition?
I spent about 20% of the time in feature engineering, 10% in the supervised learning part and 70% eagerly awaiting for the results.
What was the run time for both training and prediction of your winning solution?
Too much, the training procedure takes around 9 hours using 12 cores.
The prediction procedure takes around 30 minutes, it is necessary to extract some features from the relational database.
Words of Wisdom
What have you taken away from this competition?
I was trying to reach a place in top 100 of the users global ranking and I finally got it.
Regarding the challenge:
- I have learned how useful it is to save intermediate results in order to not repeat the full training procedure only to change the last steps of the algorithm.
- A paper with my approach to the problem in the next ICDM 2015 workshop dedicated to the challenge.
Do you have any advice for those just getting started in data science?
"All hope abandon, ye who enter here".
No, seriously, at the beginning you may feel frustrated because it is difficult area but you are in the correct place if:
- You love statistics more than other software engineers
- You love software engineering more than other statisticians.
Bio
Roberto Diaz is a researcher in the R&D department of Treelogic, a SME Spanish company focused on Machine Learning, Computer Vision and Big Data that takes part in many EU Research and Innovarions programmes. In parallel he works on his PhD thesis in the University Carlos III de Madrid focused on the parallelization of Kernel Methods.
ICDM Winner's Interview: 3rd place, Roberto Diaz的更多相关文章
- Taxi Trip Time Winners' Interview: 3rd place, BlueTaxi
Taxi Trip Time Winners' Interview: 3rd place, BlueTaxi This spring, Kaggle hosted two competitions w ...
- Diabetic Retinopathy Winner's Interview: 1st place, Ben Graham
Diabetic Retinopathy Winner's Interview: 1st place, Ben Graham Ben Graham finished at the top of the ...
- Recruit Coupon Purchase Winner's Interview: 2nd place, Halla Yang
Recruit Coupon Purchase Winner's Interview: 2nd place, Halla Yang Recruit Ponpare is Japan's leading ...
- CrowdFlower Winner's Interview: 1st place, Chenglong Chen
CrowdFlower Winner's Interview: 1st place, Chenglong Chen The Crowdflower Search Results Relevance c ...
- Otto Product Classification Winner's Interview: 2nd place, Alexander Guschin ¯\_(ツ)_/¯
Otto Product Classification Winner's Interview: 2nd place, Alexander Guschin ¯\_(ツ)_/¯ The Otto Grou ...
- How Much Did It Rain? Winner's Interview: 1st place, Devin Anzelmo
How Much Did It Rain? Winner's Interview: 1st place, Devin Anzelmo An early insight into the importa ...
- Facebook IV Winner's Interview: 1st place, Peter Best (aka fakeplastictrees)
Facebook IV Winner's Interview: 1st place, Peter Best (aka fakeplastictrees) Peter Best (aka fakepla ...
- Liberty Mutual Property Inspection, Winner's Interview: Qingchen Wang
Liberty Mutual Property Inspection, Winner's Interview: Qingchen Wang The hugely popular Liberty Mut ...
- 如何在 Kaggle 首战中进入前 10%
原文:https://dnc1994.com/2016/04/rank-10-percent-in-first-kaggle-competition/ Introduction Kaggle 是目前最 ...
随机推荐
- 第一个spring冲刺
第一天商量讨论出我们选择的题目为四则运算,虽然在上一个学期已经做过了,但是还有完善的地方,希望能够做出创新,另外下面的燃尽图是我们预测的3个阶段的进度,按情况不同可能实际的情况也不同,但是我们会尽量跟 ...
- git的使用(本地及关联远程,上传到远程)
前言:本想这个博客就是用来交作业的,因为作业,学习了git ,现在觉得,既然有这个博客了,就好好用一下吧,也给自己养成个好习惯,就也来记录一下吧,关于git的本地仓库上传,本地与远程的关联,从本地上传 ...
- iOS开发 tableView点击下拉扩展 + 内嵌collectionView上传图片效果
---恢复内容开始--- //需要的效果 1.设置window的根视图控制器为一个UITableViewController #import "AppDelegate.h"#imp ...
- 汇编语言段和RSEG用法
RSEG是段选择指令,要想明白它的意思就要了解段的意思.段是程序代码或数据对象的存储单位.程序代码放到代码段,数据对象放到数据段.段分两种,一是绝对段,一是再定位段.绝对段在汇编语言中指定,在用L51 ...
- pxe前期网络准备
核心交换机:[H3C12510-HEXIN]vlan 3010 //如果存在则不需要创建[H3C12510-HEXIN]dis interface Bridge-Aggregation brief / ...
- Java如何查看死锁?
转载自 https://blog.csdn.net/u014039577/article/details/52351626 Java中当我们的开发涉及到多线程的时候,这个时候就很容易遇到死锁问题,刚开 ...
- From 百度知道 SQLSERVER 字符集排序规则简单说明
https://zhidao.baidu.com/question/390314825002277485.html 学习一下, 以后说不定用得到. collate Latin1_General_CS_ ...
- yii框架 excel导出
环境: yii框架 basic版 1.下载 PHPexcel (我用的是PHPExcel-1.8.1) 2.将下载的文件夹 (PHPExcel-1.8.1)放至 vender下 (路径:basic ...
- MT【153】缩小包围圈
(清华2017.4.29标准学术能力测试3) 集合$S=\{1,2,\cdots,25\}$,$A\subseteq S$,且$A$ 的所有子集中元素之和不同.则下列选项正确的有( ) A. ...
- yii2 查询数据库语法
$query0 = ImGroupUser::find()->where(['gid'=>'56680dfc60b215d62104a4d8'])->select('user_cli ...