np.pad()常用与深度学习中的数据预处理,可以将numpy数组按指定的方法填充成指定的形状。

np.pad()

对一维数组的填充

import numpy as np
arr1D = np.array([1, 1, 2, 2, 3, 4])
'''不同的填充方法'''
print 'constant: ' + str(np.pad(arr1D, (2, 3), 'constant'))
print 'edge: ' + str(np.pad(arr1D, (2, 3), 'edge'))
print 'linear_ramp: ' + str(np.pad(arr1D, (2, 3), 'linear_ramp'))
print 'maximum: ' + str(np.pad(arr1D, (2, 3), 'maximum'))
print 'mean: ' + str(np.pad(arr1D, (2, 3), 'mean'))
print 'median: ' + str(np.pad(arr1D, (2, 3), 'median'))
print 'minimum: ' + str(np.pad(arr1D, (2, 3), 'minimum'))
print 'reflect: ' + str(np.pad(arr1D, (2, 3), 'reflect'))
print 'symmetric: ' + str(np.pad(arr1D, (2, 3), 'symmetric'))
print 'wrap: ' + str(np.pad(arr1D, (2, 3), 'wrap'))

解释:
第一个参数是待填充数组
第二个参数是填充的形状,(2,3)表示前面两个,后面三个
第三个参数是填充的方法
填充方法:
constant连续一样的值填充,有关于其填充值的参数。constant_values=(x, y)时前面用x填充,后面用y填充。缺参数是为0000。。。
edge用边缘值填充
linear_ramp边缘递减的填充方式
maximum, mean, median, minimum分别用最大值、均值、中位数和最小值填充
reflect, symmetric都是对称填充。前一个是关于边缘对称,后一个是关于边缘外的空气对称╮(╯▽╰)╭
wrap用原数组后面的值填充前面,前面的值填充后面
也可以有其他自定义的填充方法

对多维数组的填充

import numpy as np
arr3D = np.array([[[1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4]],
[[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]],
[[1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4]]])
'''对于多维数组'''
print 'constant: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'constant'))
print 'edge: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'edge'))
print 'linear_ramp: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'linear_ramp'))
print 'maximum: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'maximum'))
print 'mean: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'mean'))
print 'median: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'median'))
print 'minimum: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'minimum'))
print 'reflect: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'reflect'))
print 'symmetric: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'symmetric'))
print 'wrap: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'wrap'))

numpy.pad的更多相关文章

  1. 图文并茂的Python教程-numpy.pad

    图文并茂的Python教程-numpy.pad np.pad()常用与深度学习中的数据预处理,可以将numpy数组按指定的方法填充成指定的形状. 声明: 需要读者了解一点numpy数组的知识np.pa ...

  2. 【400】numpy.pad 为数组加垫(迷宫类题目)

    参考:Numpy学习——数组填充np.pad()函数的应用 举例说明: import numpy as np a = np.zeros((3, 4), dtype=int) a array([[0, ...

  3. python中numpy.pad简单填充0用法

    # -*- coding: utf-8 -*-"""Created on Sun Apr 28 22:07:02 2019 @author: jiangshan" ...

  4. numpy中pad函数的常用方法

    一.参数解释 ndarray = numpy.pad(array, pad_width, mode, **kwargs) array为要填补的数组 pad_width是在各维度的各个方向上想要填补的长 ...

  5. TensorLayer官方中文文档1.7.4:API – 数据预处理

    所属分类:TensorLayer API - 数据预处理¶ 我们提供大量的数据增强及处理方法,使用 Numpy, Scipy, Threading 和 Queue. 不过,我们建议你直接使用 Tens ...

  6. python中的张量运算(tensor)

    1,首先比较二者的参数部分:这就是处理0阶张量和1阶张量的区别 np.max:(a, axis=None, out=None, keepdims=False) 求序列的最值 最少接收一个参数 axis ...

  7. 【python实现卷积神经网络】卷积层Conv2D实现(带stride、padding)

    关于卷积操作是如何进行的就不必多说了,结合代码一步一步来看卷积层是怎么实现的. 代码来源:https://github.com/eriklindernoren/ML-From-Scratch 先看一下 ...

  8. numpy的prod()函数和pad()函数

    1.np.prod()函数用来计算所有元素的乘积,对于有多个维度的数组可以指定轴,如axis=1指定计算每一行的乘积. 2.np.lib.pad()函数用来把原来的list在原来的维度上进行扩展 例1 ...

  9. 《Python数据分析常用手册》一、NumPy和Pandas篇

    一.常用链接: 1.Python官网:https://www.python.org/ 2.各种库的whl离线安装包:http://www.lfd.uci.edu/~gohlke/pythonlibs/ ...

随机推荐

  1. (连通图 模板题)迷宫城堡--hdu--1269

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1269 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  2. Citrus Engine简单Demo

    Citrus Engine是一个的开源flash平台(platform,也可以说是卷轴类)游戏引擎,它基于Starling Framework添加了各种物理引擎,3D引擎,动画引擎. Citrus实现 ...

  3. java虚拟机加载系统环境变量到内存中

    JVM在启动的时候,会将环境变量,转换到 系统属性 里面.可以通过System.getProperty("");来获取.catalina.home属性,就是运行tomcat的JVM ...

  4. 测试与发布(Alpha版本)——小谷围驻广东某工业719电竞大队

    测试与发布(Alpha版本)--小谷围驻广东某工业719电竞大队 一.引言 1.需求规格说明书: https://www.cnblogs.com/TaoTaoLV1/p/9819913.html 2. ...

  5. Android Sqlite 简单SQL语句

    --- 创建表 create table student(_id integer primary key autoincrement, name text); --- 查询全部 select _id, ...

  6. linux系统编程之信号(五):信号集操作函数,信号阻塞与未决

    一,信号集及相关操作函数 信号集被定义为一种数据类型: typedef struct { unsigned long sig[_NSIG_WORDS]: } sigset_t 信号集用来描述信号的集合 ...

  7. C#使用Linq对DataGridView进行模糊查找

    针对DataGridView中已进行过数据绑定,即已向DataGridView中添加了一些数据,可以结合Linq查询,并让匹配查询的行高亮显示,如下图:     具体实现如下:   [csharp] ...

  8. 一步一步学习Swift之(二):好玩的工具playground与swfit基础语法

    playground好于在于能一边写代码一边看到输出的常量变量的值.不需要运行模拟器. 我们来试一下该工具的用法. 打开xcode6开发工具,选择Get started with a playgrou ...

  9. FFmpeg音视频解封装

    一 . 解封装用到的函数和结构体 1.av_register_all() : open 一次就调用一次 2.avformat_network_init() : 网络模块初始化 3.avformat_o ...

  10. ZZNU 1719(最长上升子序列+最长下降子序列)

    先吐血一发,噗! 再吐血一次,啊啊啊啊! 好吧,做了那么多次最长上升子序列,看这题看了半天才发现还有最长下降子序列,呵呵哒! AC代码: #include<stdio.h>//老恶心#in ...