Happy 2006
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 8359   Accepted: 2737

Description

Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.

Input

The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

Output

Output the K-th element in a single line.

Sample Input

2006 1
2006 2
2006 3

Sample Output

1
3
5

Source

 
 
这题,以前做的时候用欧几里得,枚举,2300ms,这次用现在的思路,欧拉来做500ms。
 
 /*
题意:求第几个与N互素的数字。
周期性问题。
举例。
5的互素有:1.2,3,4
很明显:
第一个互素是1
第二个是 2
......
第五个是 6=5+1;
第六个是 8=6+2;
这里就存在着周期T.
1.需要注意对%==0 的时候的讨论。
2.M的值可以为1.要特判。否则对后面的/法,有影响,会RE的。
3.基本的思路也很简单,求出N的欧拉值,那么T就求出来了,然后
求出它的素数因子,扫一遍,找到余数的那个互素数。
*/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std; int opl[];
int s[];
int prime[],len;
int f[],flen; void make_prime()//素数打表
{
int i,j;
len=;
for(i=;i<=;i++)
if(s[i]==false)
{
prime[++len]=i;
for(j=i*;j<=;j=j+i)
s[j]=true;
}
} void make_Euler()//欧拉函数[1,1000000]全部打表。
{
int i,j;
make_prime();
for(i=;i<=;i++)
opl[i]=i;
opl[]=;
for(i=;i<=len;i++)
for(j=prime[i];j<=;j=j+prime[i])
opl[j]=opl[j]/prime[i]*(prime[i]-);
} void make_dEuler(int n)//素因子装在f[]
{
int i;
flen=;
for(i=;i*i<=n;i++)
if(n%i==)
{
while(n%i==)
n=n/i;
f[++flen]=i;
}
if(n!=)
f[++flen]=n;
} int make_ini(int n,int k1)
{
int i,j;
int num=;
make_dEuler(n);
memset(s,false,sizeof(s));
for(i=;i<=flen;i++)
for(j=f[i];j<=n;j=j+f[i])
s[j]=true;
for(i=;i<=n;i++)
if(s[i]==false)
{
num++;
if(num==k1)
return i;
}
} int main()
{
int n,m,sum,k,k1,T;
make_Euler();
while(scanf("%d%d",&n,&m)>)
{
if(n==)//特判
{
printf("%d\n",m);
continue;
}
sum=;
T=opl[n];
if(m%T==)//!!~
{
sum=sum+n*((m-)/T);
sum=sum+make_ini(n,T);
}
else
{
sum=sum+n*(m/T);
sum=sum+make_ini(n,m%T);
}
printf("%d\n",sum);
}
return ;
}

POJ 2773 Happy 2006------欧几里得 or 欧拉函数。的更多相关文章

  1. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  2. POJ 2773 Happy 2006#素数筛选+容斥原理+二分

    http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...

  3. POJ 2773 Happy 2006(欧几里德算法)

    题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里 ...

  4. poj 2773 Happy 2006 - 二分答案 - 容斥原理

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11161   Accepted: 3893 Description Two ...

  5. POJ 2773 Happy 2006 数学题

    题目地址:http://poj.org/problem?id=2773 因为k可能大于m,利用gcd(m+k,m)=gcd(k,m)=gcd(m,k)的性质,最后可以转化为计算在[1,m]范围内的个数 ...

  6. [poj 2773] Happy 2006 解题报告 (二分答案+容斥原理)

    题目链接:http://poj.org/problem?id=2773 题目大意: 给出两个数m,k,要求求出从1开始与m互质的第k个数 题解: #include<algorithm> # ...

  7. POJ 2773 Happy 2006(容斥原理+二分)

    Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10827   Accepted: 3764 Descr ...

  8. poj 2773 Happy 2006

    // 题意 :给你两个数 m(10^6),k(10^8) 求第k个和m互质的数是什么这题主要需要知道这样的结论gcd(x,n)=1 <==> gcd(x+n,n)=1证明 假设 gcd(x ...

  9. poj 2773 Happy 2006 容斥原理+二分

    题目链接 容斥原理求第k个与n互质的数. #include <iostream> #include <vector> #include <cstdio> #incl ...

  10. 欧几里得&扩展欧几里得

    原博网址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数 ...

随机推荐

  1. Android代码编译出现的错误

    一.decoupled apps failed  解耦应用程序失败 2.每次编译时候一定先扩充内存 export JACK_SERVER_VM_ARGUMENTS="-Dfile.encod ...

  2. PHP中日期函数

    1,转化为时间戳函数:strtotime() 本函数接受一个包含美国英语日期格式的字符串并尝试将其解析为Unix时间戳,其值相对于now参数给出的时间,如果没有提供此参数则使用系统当前时间. < ...

  3. linux系统上内网ip和和外网ip的关系

    1.不同服务之间的访问需要使用公网IP+端口才能访问 2.服务器上一般都是域名访问,服务器会把ip+端口映射成固定的域名,所以如果想访问服务器上其他应用,就必须的放开应用限制 问题,在服务器上放开对某 ...

  4. Jmeter做并发测试(设置集合点)

    集合点:让所有请求在不满足条件的时候处于等待状态. 如:我集合点设置为50,那么不满足50个请求的时候,这些请求都会集合在一起,处于等待状态,当达到50的时候,就一起执行.从而达到并发的效果. 那么J ...

  5. JSP知识汇总

    JSP知识汇总 一.简介 > HTML - HTML擅长显示一个静态的网页,但是不能调用Java程序. > Servlet - Servlet擅长调用Java程序和后台进行交互,但是它不擅 ...

  6. Spring中AOP切面编程学习笔记

    注解方式实现aop我们主要分为如下几个步骤: 1.在切面类(为切点服务的类)前用@Aspect注释修饰,声明为一个切面类. 2.用@Pointcut注释声明一个切点,目的是为了告诉切面,谁是它的服务对 ...

  7. 【jxoi2018】游戏 组合数学

    首先令$n=r-l+1$. 令$k$表示区间$[l,r]$中存在多少个数$x$,使得$x$不存在小于$x$且在区间$[l,r]$中的因数,我们把包含这些数的数集称为$S$ 我们来先想一个$O(nk)$ ...

  8. leetcode 114. 二叉树展开为链表(Flatten Binary Tree to Linked List)

    目录 题目描述: 示例: 解法: 题目描述: 给定一个二叉树,原地将它展开为链表. 示例: 给定二叉树 1 / \ 2 5 / \ \ 3 4 6 将其展开为: 1 \ 2 \ 3 \ 4 \ 5 \ ...

  9. mysql清空表命令:delete和truncate区别

    mysql清空表可以用delete和truncate两个命令来完成: 1. delete ① 语法:delete from table_name: ② 示例:DELETE FROM `order`; ...

  10. python的字符串内建函数(方法)

    原本总结一下,后来发现这个里面讲的很全,可以点进去参考:http://www.runoob.com/python/python-strings.html