B. Mike and Shortcuts
time limit per test:

3 seconds

memory limit per test:

256 megabytes

input:

standard input

output:

standard output

Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.

City consists of n intersections numbered from 1 to n. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number i to intersection j requires |i - j| units of energy. The total energy spent by Mike to visit a sequence of intersections p1 = 1, p2, ..., pk is equal to  units of energy.

Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly n shortcuts in Mike's city, the ith of them allows walking from intersection i to intersection ai (i ≤ ai ≤ ai + 1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence p1 = 1, p2, ..., pk then for each 1 ≤ i < k satisfying pi + 1 = api and api ≠ pi Mike will spend only 1 unit of energy instead of |pi - pi + 1| walking from the intersection pi to intersection pi + 1. For example, if Mike chooses a sequencep1 = 1, p2 = ap1, p3 = ap2, ..., pk = apk - 1, he spends exactly k - 1 units of total energy walking around them.

Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1 ≤ i ≤ n Mike is interested in finding minimum possible total energy of some sequence p1 = 1, p2, ..., pk = i.

Input

The first line contains an integer n (1 ≤ n ≤ 200 000) — the number of Mike's city intersection.

The second line contains n integers a1, a2, ..., an (i ≤ ai ≤ n , , describing shortcuts of Mike's city, allowing to walk from intersection i to intersection ai using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from ai to i).

Output

In the only line print n integers m1, m2, ..., mn, where mi denotes the least amount of total energy required to walk from intersection 1 to intersection i.

Examples
input
3
2 2 3
output
0 1 2 
input
5
1 2 3 4 5
output
0 1 2 3 4 
input
7
4 4 4 4 7 7 7
output
0 1 2 1 2 3 3 
Note

In the first sample case desired sequences are:

1: 1; m1 = 0;

2: 1, 2; m2 = 1;

3: 1, 3; m3 = |3 - 1| = 2.

In the second sample case the sequence for any intersection 1 < i is always 1, i and mi = |1 - i|.

In the third sample case — consider the following intersection sequences:

1: 1; m1 = 0;

2: 1, 2; m2 = |2 - 1| = 1;

3: 1, 4, 3; m3 = 1 + |4 - 3| = 2;

4: 1, 4; m4 = 1;

5: 1, 4, 5; m5 = 1 + |4 - 5| = 2;

6: 1, 4, 6; m6 = 1 + |4 - 6| = 3;

7: 1, 4, 5, 7; m7 = 1 + |4 - 5| + 1 = 3.

题目链接:http://codeforces.com/contest/689/problem/B


题意:任意两点的距离为两点序号差的绝对值,有一些特殊的点,i到ai的距离为1.求1到每个点的最短距离。

思路:SPFA模板题。任意两个编号相邻的点的距离为1构造双向边,再加上n个特殊点构成的边。因为n最大为200000,套用SPFA模板。

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
struct node
{
int to,d;
} edge[*MAXN];
int head[MAXN],nextt[*MAXN];
int sign[MAXN];
queue<int>Q;
int dist[MAXN];
int n;
void add(int i,int u,int v,int d)
{
edge[i].to=v;
edge[i].d=d;
nextt[i]=head[u];
head[u]=i;
}
void SPFA(int v)
{
int i,u;
for(i=; i<=n; i++)
{
dist[i]=inf;
sign[i]=;
}
dist[v]=;
Q.push(v);
sign[v]=;
while(!Q.empty())
{
u=Q.front();
Q.pop();
sign[u]=;
i=head[u];
while(i!=)
{
if(dist[edge[i].to]>dist[u]+edge[i].d)
{
dist[edge[i].to]=dist[u]+edge[i].d;
if(!sign[edge[i].to])
{
Q.push(edge[i].to);
sign[edge[i].to]=;
}
}
i=nextt[i];
}
}
}
int a[];
int main()
{
int i,j;
scanf("%d",&n);
memset(head,,sizeof(head));
j=;
for(i=; i<=n; i++)
{
scanf("%d",&a[i]);
if(i!=a[i]) add(j++,i,a[i],);
if(i>)
{
add(j++,i-,i,);
add(j++,i,i-,);
}
}
SPFA();
for(i=; i<=n; i++)
cout<<dist[i]<<" ";
cout<<endl;
return ;
}

SPFA

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
vector<int>V[];
int dist[];
void DFS(int u)
{
int i;
for(i=; i<V[u].size(); i++)
{
if(dist[V[u][i]]>dist[u]+)
{
dist[V[u][i]]=dist[u]+;
DFS(V[u][i]);
}
}
}
int main()
{
int i,n,a;
scanf("%d",&n);
for(i=; i<=n; i++)
{
scanf("%d",&a);
V[i].push_back(a);
if(i+<=n) V[i].push_back(i+);
if(i->=) V[i].push_back(i-);
}
for(i=; i<=n; i++) dist[i]=inf;
dist[]=;
DFS();
for(i=;i<=n;i++)
cout<<dist[i]<<" ";
cout<<endl;
return ;
}

DFS

Codeforces 689B. Mike and Shortcuts SPFA/搜索的更多相关文章

  1. CodeForces 689B Mike and Shortcuts (bfs or 最短路)

    Mike and Shortcuts 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/F Description Recently ...

  2. CodeForces 689B Mike and Shortcuts (BFS or 最短路)

    题目链接:http://codeforces.com/problemset/problem/689/B 题目大意: 留坑 明天中秋~

  3. codeforces 689B Mike and Shortcuts 最短路

    题目大意:给出n个点,两点间的常规路为双向路,路长为两点之间的差的绝对值,第二行为捷径,捷径为单向路(第i个点到ai点),距离为1.问1到各个点之间的最短距离. 题目思路:SPFA求最短路 #incl ...

  4. codeforces 689 Mike and Shortcuts(最短路)

    codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...

  5. codeforces 689B B. Mike and Shortcuts(bfs)

    题目链接: B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input ...

  6. Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)

    B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  7. Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs

    B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...

  8. hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)

    hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...

  9. codeforces 547E Mike and Friends

    codeforces 547E Mike and Friends 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define ...

随机推荐

  1. Java 中的 JVM、堆和栈 -- 初步了解

    JVM -- Java Virtual Machine(Java虚拟机) —— 因为要说堆和栈,所以我们必须要先简单的说一下JVM.(JVM详细请找度娘啦~) 首先,我们都知道 java 一直宣传的口 ...

  2. linux 系统管理 实战技巧

    一.这篇文章讲了什么? 这篇文章很有参考性哈.本来是想等一段时间有更多条技巧后在发布的,不过,突然发现,我是去年的今天在博客园落户了,祝我的博客一周岁快乐,希望以后多分享一些文章啦.所以就把草稿箱的其 ...

  3. VisualSVN:允许修改svn提交日志(pre-revpro-change hook)

    有时候需要对之前版本提交的错误的日志信息进行修改或者进行补充描述: 1.在windows 7( 64位 )下使用TortoiseSVN客户端,选中代码目录,点击右键,选择<显示日志> 在出 ...

  4. eclipse override报错

    转自:https://www.cnblogs.com/libra0920/p/6408891.html 错误: 在 eclipse 的新工作空间开发项目时,出现大面积方法编译错误.鼠标放在方法名上后显 ...

  5. 前台框架vue.js中怎样嵌入 Echarts 组件?

    目前常用的图标插件有 charts,  Echarts, highcharts.这次将介绍 Echarts 在 Vue 项目中的应用. 一.安装插件 使用 cnpm 安装 Echarts cnpm i ...

  6. ABAP-增强-层级BOM-AB件业务

    目前新需求:整车A下挂有委外总成件B,总成件B和子件E是层级BOM,且采购类型均为F,信息记录类型均为寄售,按照现在标准MRP逻辑,只能计算第一层级子件需求,无法运行出子件E的需求. 1.实现方式 1 ...

  7. UI5-文档-2.4-Node.js-Based开发环境

    用于修改OpenUI5.环境是基于Node.js,用作服务器,具有一个基于Grunt的构建过程.本节提供关于初始设置.开发工作流和测试执行的信息. 常规开发过程: 不需要构建过程,您可以简单地修改任何 ...

  8. JS时间转时间戳,时间戳转时间。时间显示模式。

    函数内容 // 时间转为时间戳 function date2timestamp(datetime) { var timestamp = new Date(Date.parse(datetime)); ...

  9. Jquery和Ajax

    jQuery 是一个 JavaScript 函数库.JavaScript 是 HTML5 以及所有现代浏览器中的默认脚本语言! jQuery 库包含以下特性: HTML 元素选取 HTML 元素操作 ...

  10. How to Pronounce SAY, SAYS, and SAID

    How to Pronounce SAY, SAYS, and SAID Share Tweet Share Tagged With: Comparison I’ve noticed many non ...