B. Mike and Shortcuts
time limit per test:

3 seconds

memory limit per test:

256 megabytes

input:

standard input

output:

standard output

Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.

City consists of n intersections numbered from 1 to n. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number i to intersection j requires |i - j| units of energy. The total energy spent by Mike to visit a sequence of intersections p1 = 1, p2, ..., pk is equal to  units of energy.

Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly n shortcuts in Mike's city, the ith of them allows walking from intersection i to intersection ai (i ≤ ai ≤ ai + 1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence p1 = 1, p2, ..., pk then for each 1 ≤ i < k satisfying pi + 1 = api and api ≠ pi Mike will spend only 1 unit of energy instead of |pi - pi + 1| walking from the intersection pi to intersection pi + 1. For example, if Mike chooses a sequencep1 = 1, p2 = ap1, p3 = ap2, ..., pk = apk - 1, he spends exactly k - 1 units of total energy walking around them.

Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1 ≤ i ≤ n Mike is interested in finding minimum possible total energy of some sequence p1 = 1, p2, ..., pk = i.

Input

The first line contains an integer n (1 ≤ n ≤ 200 000) — the number of Mike's city intersection.

The second line contains n integers a1, a2, ..., an (i ≤ ai ≤ n , , describing shortcuts of Mike's city, allowing to walk from intersection i to intersection ai using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from ai to i).

Output

In the only line print n integers m1, m2, ..., mn, where mi denotes the least amount of total energy required to walk from intersection 1 to intersection i.

Examples
input
3
2 2 3
output
0 1 2 
input
5
1 2 3 4 5
output
0 1 2 3 4 
input
7
4 4 4 4 7 7 7
output
0 1 2 1 2 3 3 
Note

In the first sample case desired sequences are:

1: 1; m1 = 0;

2: 1, 2; m2 = 1;

3: 1, 3; m3 = |3 - 1| = 2.

In the second sample case the sequence for any intersection 1 < i is always 1, i and mi = |1 - i|.

In the third sample case — consider the following intersection sequences:

1: 1; m1 = 0;

2: 1, 2; m2 = |2 - 1| = 1;

3: 1, 4, 3; m3 = 1 + |4 - 3| = 2;

4: 1, 4; m4 = 1;

5: 1, 4, 5; m5 = 1 + |4 - 5| = 2;

6: 1, 4, 6; m6 = 1 + |4 - 6| = 3;

7: 1, 4, 5, 7; m7 = 1 + |4 - 5| + 1 = 3.

题目链接:http://codeforces.com/contest/689/problem/B


题意:任意两点的距离为两点序号差的绝对值,有一些特殊的点,i到ai的距离为1.求1到每个点的最短距离。

思路:SPFA模板题。任意两个编号相邻的点的距离为1构造双向边,再加上n个特殊点构成的边。因为n最大为200000,套用SPFA模板。

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
struct node
{
int to,d;
} edge[*MAXN];
int head[MAXN],nextt[*MAXN];
int sign[MAXN];
queue<int>Q;
int dist[MAXN];
int n;
void add(int i,int u,int v,int d)
{
edge[i].to=v;
edge[i].d=d;
nextt[i]=head[u];
head[u]=i;
}
void SPFA(int v)
{
int i,u;
for(i=; i<=n; i++)
{
dist[i]=inf;
sign[i]=;
}
dist[v]=;
Q.push(v);
sign[v]=;
while(!Q.empty())
{
u=Q.front();
Q.pop();
sign[u]=;
i=head[u];
while(i!=)
{
if(dist[edge[i].to]>dist[u]+edge[i].d)
{
dist[edge[i].to]=dist[u]+edge[i].d;
if(!sign[edge[i].to])
{
Q.push(edge[i].to);
sign[edge[i].to]=;
}
}
i=nextt[i];
}
}
}
int a[];
int main()
{
int i,j;
scanf("%d",&n);
memset(head,,sizeof(head));
j=;
for(i=; i<=n; i++)
{
scanf("%d",&a[i]);
if(i!=a[i]) add(j++,i,a[i],);
if(i>)
{
add(j++,i-,i,);
add(j++,i,i-,);
}
}
SPFA();
for(i=; i<=n; i++)
cout<<dist[i]<<" ";
cout<<endl;
return ;
}

SPFA

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 6e5+, mod = 1e9 + , inf = 0x3f3f3f3f;
vector<int>V[];
int dist[];
void DFS(int u)
{
int i;
for(i=; i<V[u].size(); i++)
{
if(dist[V[u][i]]>dist[u]+)
{
dist[V[u][i]]=dist[u]+;
DFS(V[u][i]);
}
}
}
int main()
{
int i,n,a;
scanf("%d",&n);
for(i=; i<=n; i++)
{
scanf("%d",&a);
V[i].push_back(a);
if(i+<=n) V[i].push_back(i+);
if(i->=) V[i].push_back(i-);
}
for(i=; i<=n; i++) dist[i]=inf;
dist[]=;
DFS();
for(i=;i<=n;i++)
cout<<dist[i]<<" ";
cout<<endl;
return ;
}

DFS

Codeforces 689B. Mike and Shortcuts SPFA/搜索的更多相关文章

  1. CodeForces 689B Mike and Shortcuts (bfs or 最短路)

    Mike and Shortcuts 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/F Description Recently ...

  2. CodeForces 689B Mike and Shortcuts (BFS or 最短路)

    题目链接:http://codeforces.com/problemset/problem/689/B 题目大意: 留坑 明天中秋~

  3. codeforces 689B Mike and Shortcuts 最短路

    题目大意:给出n个点,两点间的常规路为双向路,路长为两点之间的差的绝对值,第二行为捷径,捷径为单向路(第i个点到ai点),距离为1.问1到各个点之间的最短距离. 题目思路:SPFA求最短路 #incl ...

  4. codeforces 689 Mike and Shortcuts(最短路)

    codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...

  5. codeforces 689B B. Mike and Shortcuts(bfs)

    题目链接: B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input ...

  6. Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)

    B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  7. Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs

    B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...

  8. hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)

    hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...

  9. codeforces 547E Mike and Friends

    codeforces 547E Mike and Friends 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define ...

随机推荐

  1. Noip2011Mayan游戏

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  2. node使用MySQL数据库

    内容: 1.node连接数据库 2.数据库常用操作 3.数据库实例 - 用户注册.登陆 1.node连接数据库 (1)下载mysql模块 (2)使用mysql模块连接数据库 let db=mysql. ...

  3. git提交到远程仓库

    Git概述 什么是Git? 刚开始对这个东西也感到挺迷茫,并且问了好多已经学习android一段时间的同学也是一头雾水,直到了解并使用之后,才体会到Git的好处以及重要意义. Git:是目前世界上最先 ...

  4. J2SE 8的输入输出--读取/写入文本文件和读取/写入二进制数据

    读取/写入文本文件 // 1. 文本输入 // (1) 短小文本直接转入字符串 String string = new String(Files.readAllBytes(Paths.get(&quo ...

  5. UI5-文档-4.13-Margins and Paddings

    我们的应用程序内容仍然粘在信箱的角落里.要微调布局,可以向上一步添加的控件添加空白和填充. 我们将使用SAPUI5提供的标准类,而不是手工向控件添加CSS.这些类负责一致的分级步骤.从左到右的支持和响 ...

  6. Java使用poi从数据库读取数据生成Excel表格

    想要使用POI操作以xsl结尾的Excel,首先要下载poi相关的jar包,用到的jar有: poi-3.9.jar poi-ooxml-3.9.jar poi-ooxml-schemas-3.9.j ...

  7. Qt 的事件

    一个事件由一个特定的QEvent子类来表示,如QMouseEvent.QKeyEvent 处理一个事件的方法: 方法一:重新实现部件的paintEvent.mousePressEvent等事件处理函数 ...

  8. python之建完model之后操作admin

    1)建完model 之后,运行./manage.py migrate 2)建立管理员:./manage.py createsuperuser 3)输入用户名和命令上提示的信息,在点击网址,输入admi ...

  9. mongodb基础学习8-复制集

    今天来简单学习一下复制集(replication),什么是复制集呢,类似于mysql的主从复制吧 简单来说就是有多个mongodb的实例,多个实例有相同的内容,其中一台用于读写,其它用于备份,当用于读 ...

  10. JAVA WEB开发中的资源国际化

    为什么要国际化? 不同国家与地区语言,文化,生活习惯等差异.在数字,时间,语言,货币,日期,百分数等的不同. 两个名词: I18N:即资源国际化,全称为Internationalization,因为首 ...