前面:关于层次huffman树和负例采样也要知道的,这里就不详细写了

来源于:https://mp.weixin.qq.com/s?__biz=MzI4MDYzNzg4Mw==&mid=2247485159&idx=1&sn=819152633c53fcae5334d031a05f7bf3&chksm=ebb43e33dcc3b725631e997132b41d34d982304c1ceb356c16b1559f92c69e6c55df009f1f8d&mpshare=1&scene=1&srcid=0823UQXmYFaNd8R09gid8c5G&key=2ae3330fddc8e50eea1a6f1a446dba6e22c4df1547f80f06454dd7dc257c3408b3fd8a793df2daef0814ffdddb04ea449089262bab967b869d44bf709cdc4f3bd471051cf0ca48d048749f03c88cd7b8&ascene=0&uin=MjM3NzI2MTEwMQ%3D%3D&devicetype=iMac+MacBookPro13%2C1+OSX+OSX+10.12+build(16A2323a)&version=12010210&nettype=WIFI&fontScale=100&pass_ticket=J6Qss31QuwUPuaYSQ2EvC0g2tE7VXzNVNeiaNQVW%2BuvqPag3hk1vixMvx3RfwnfU

一个单词,神经网络理解不了,需要人转换成数字再喂给它。最naive的方式就是one-hot,但是太过于稀疏,不好。所以在改进一下,把one-hot进一步压缩成一个dense vector。

word2vec算法就是根据上下文预测单词,从而获得词向量矩阵。

预测单词的任务只是一个幌子,我们需要的结果并不是预测出来的单词,而是通过预测单词这个任务,不断更新着的参数矩阵weights。

预测任务由一个简单的三层神经网络来完成,其中有两个参数矩阵V与U,V∈RDh*|W|,U∈R|W|*Dh

V是输入层到隐藏层的矩阵,又被称为look-up table(因为,输入的是one-hot向量,一个one-hot向量乘以一个矩阵相当于取了这个矩阵的其中一列。将其中的每一列看成是词向量)

U是隐藏层到输出层的矩阵,又被称为word representation matrix(将其中的每一行看成是词向量)

最后需要的词向量矩阵是将两个词向量矩阵相加 =V+UT,然后每一列就是词向量。

2两种实现方法

2.1. Skip-Gram

训练任务:根据中心词,预测出上下文词

输入:一个中心词(center word,x∈R|W|*1)

参数:一个look up table V∈RDh*|W|,一个word representation matrix U∈R|W|*Dh

Skip-Gram步骤图:

2.2. CBOW

与Skip-Gram相反,是通过完成上下文词预测中心词的任务来训练词向量的。

CBOW步骤图:

cbow&&skipgram详细的更多相关文章

  1. DL4NLP——词表示模型(三)word2vec(CBOW/Skip-gram)的加速:Hierarchical Softmax与Negative Sampling

    上篇博文提到,原始的CBOW / Skip-gram模型虽然去掉了NPLM中的隐藏层从而减少了耗时,但由于输出层仍然是softmax(),所以实际上依然“impractical”.所以接下来就介绍一下 ...

  2. DL4NLP——词表示模型(二)基于神经网络的模型:NPLM;word2vec(CBOW/Skip-gram)

    本文简述了以下内容: 神经概率语言模型NPLM,训练语言模型并同时得到词表示 word2vec:CBOW / Skip-gram,直接以得到词表示为目标的模型 (一)原始CBOW(Continuous ...

  3. word2vec原理(一) CBOW+Skip-Gram模型基础

    word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系.本文的讲解word2vec原理以Githu ...

  4. cbow与skip-gram

    场景:上次回答word2vec相关的问题,回答的是先验概率和后验概率,没有回答到关键点. 词袋模型(Bag of Words, BOW)与词向量(Word Embedding)模型 词袋模型就是将句子 ...

  5. word2vec原理(一) CBOW与Skip-Gram模型基础

    word2vec原理(一) CBOW与Skip-Gram模型基础 word2vec原理(二) 基于Hierarchical Softmax的模型 word2vec原理(三) 基于Negative Sa ...

  6. word2vec原理(一) CBOW与Skip-Gram模型基础——转载自刘建平Pinard

    转载来源:http://www.cnblogs.com/pinard/p/7160330.html word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与 ...

  7. word2vec原理CBOW与Skip-Gram模型基础

    转自http://www.cnblogs.com/pinard/p/7160330.html刘建平Pinard word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量 ...

  8. word2vec (CBOW、分层softmax、负采样)

    本文介绍 wordvec的概念 语言模型训练的两种模型CBOW+skip gram word2vec 优化的两种方法:层次softmax+负采样 gensim word2vec默认用的模型和方法 未经 ...

  9. (转)word2vec前世今生

    word2vec 前世今生 2013年,Google开源了一款用于词向量计算的工具——word2vec,引起了工业界和学术界的关注.首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效 ...

随机推荐

  1. 解题:USACO07FEB The Cow Lexicon

    题面 第一次做Trie上dp,感谢 @i207M 的资瓷 对子串们建立一棵Trie,设$dp[i][j]$表示到母串第$i$位为止在$Trie$上的$j$号节点时的最小修改数量,然后就可以枚举母串各位 ...

  2. 公钥与私钥对HTTPS的理解(数字证书的需要)

    本文转自某大牛链接 文中首先解释了加密解密的一些基础知识和概念,然后通过一个加密通信过程的例子说明了加密算法的作用,以及数字证书的出现所起的作用.接着对数字证书做一个详细的解释,并讨论一下window ...

  3. python的str()字符串类型的方法详解

    字符串一旦创建,不可修改,一旦修改或者拼接,都会造成重新生成字符串,因为内存存数据是一个挨着一个存的,如果增加一个字符串的话,之前的老位置只有一个地方,不够,这是原理性的东西,在其他语言里面也一样 7 ...

  4. Integer两种转int方法比较

    方法一: Integer.parseInt(); 返回的是一个 int 的值. 方法二: new Integer.valueof(); 返回的是 Integer 的对象. new Integer.va ...

  5. Java基础-IO流对象之转换流(InputStreamReader与OutoutStreamWriter)

    Java基础-IO流对象之转换流(InputStreamReader与OutoutStreamWriter) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.转换流概述 我们之前 ...

  6. ReactiveCocoa内存管理

    1.我们创建的管道是如何被保存的么? ReactiveCocoa设计的目的之一是允许这样一种编程样式,即管道可以匿名创建.到目前为止,我们的管道都是这么处理的.为了支持这种模式,ReactiveCoc ...

  7. OC中线程安全的单例

    @implementation MySingleton + (instancetype)sharedInstance { static MySingleton* instance = nil; sta ...

  8. UITableViewCell在非Nib及Cell重用下设置CellStyle

    在UITableViewController(实现了UITableViewDataSource)下需要实现 - (UITableViewCell *)tableView:(UITableView *) ...

  9. pthread动态库命名规则

    Library naming-------------- Because the library is being built using various exceptionhandling sche ...

  10. 互斥锁 pthread_mutex_init()函数

    Linux下为了多线程同步,通常用到锁的概念.posix下抽象了一个锁类型的结构:ptread_mutex_t.通过对该结构的操作,来判断资源是否可以访问.顾名思义,加锁(lock)后,别人就无法打开 ...