「GXOI / GZOI2019」旧词
确定这不是思博题
看起来很神仙,本来以为是\([LNOI2014]LCA\)的加强版,结果发现一个点的贡献是\(s_i\times (deep_i^k-(deep_i-1)^k)\),\(s_i\)就是这个点的子树内部\(1\)到\(x\)点的数量
我们发现我们在树剖的时候利用后面那个东西就能来更新答案和打标机啦
照样离线就好了
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=5e4+5;
const int mod=998244353;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct Ask{int x,y,rk;}q[maxn];
struct E{int v,nxt;}e[maxn];
int deep[maxn],head[maxn],dfn[maxn],id[maxn],top[maxn],fa[maxn],son[maxn];
int sum[maxn],n,m,num,calc[maxn],Ans[maxn],k,__;
int tag[maxn<<2],l[maxn<<2],r[maxn<<2],w[maxn<<2],d[maxn<<2];
inline int cmp(Ask A,Ask B) {return A.x<B.x;}
inline void add(int x,int y) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;
}
inline int ksm(int a,int b) {
int S=1;
while(b) {if(b&1) S=(1ll*S*a)%mod;b>>=1;a=(1ll*a*a)%mod;}
return S;
}
void dfs1(int x) {
sum[x]=1;
if(!calc[deep[x]])
calc[deep[x]]=(ksm(deep[x],k)-ksm(deep[x]-1,k)+mod)%mod;
for(re int i=head[x];i;i=e[i].nxt) {
if(deep[e[i].v]) continue;
deep[e[i].v]=deep[x]+1;fa[e[i].v]=x;
dfs1(e[i].v);sum[x]+=sum[e[i].v];
if(sum[e[i].v]>sum[son[x]]) son[x]=e[i].v;
}
}
void dfs2(int x,int topf) {
top[x]=topf,dfn[x]=++__,id[__]=x;
if(son[x]) dfs2(son[x],topf);
for(re int i=head[x];i;i=e[i].nxt)
if(!top[e[i].v]) dfs2(e[i].v,e[i].v);
}
void build(int x,int y,int i) {
l[i]=x,r[i]=y;
if(x==y) {w[i]=calc[deep[id[x]]];return;}
int mid=x+y>>1;
build(x,mid,i<<1),build(mid+1,y,i<<1|1);
w[i]=(w[i<<1]+w[i<<1|1])%mod;
}
inline void pushdown(int i) {
if(!tag[i]) return;
tag[i<<1]+=tag[i];tag[i<<1|1]+=tag[i];
d[i<<1]=(d[i<<1]+1ll*w[i<<1]*tag[i]%mod)%mod;
d[i<<1|1]=(d[i<<1|1]+1ll*w[i<<1|1]*tag[i]%mod)%mod;
tag[i]=0;
}
void change(int x,int y,int i) {
if(x<=l[i]&&y>=r[i]) {
d[i]=(d[i]+w[i])%mod;
tag[i]++;
return;
}
pushdown(i);
int mid=l[i]+r[i]>>1;
if(x<=mid) change(x,y,i<<1);
if(y>mid) change(x,y,i<<1|1);
d[i]=(d[i<<1]+d[i<<1|1])%mod;
}
int query(int x,int y,int i) {
if(x<=l[i]&&y>=r[i]) return d[i];
pushdown(i);
int mid=l[i]+r[i]>>1,tot=0;
if(x<=mid) tot=(tot+query(x,y,i<<1))%mod;
if(y>mid) tot=(tot+query(x,y,i<<1|1))%mod;
return tot;
}
inline void modify(int x) {
while(top[x])
change(dfn[top[x]],dfn[x],1),x=fa[top[x]];
}
inline int ask(int x) {
int tmp=0;
while(top[x])
tmp=(tmp+query(dfn[top[x]],dfn[x],1))%mod,x=fa[top[x]];
return tmp;
}
int main() {
n=read(),m=read(),k=read();
for(re int x,i=2;i<=n;i++)
x=read(),add(x,i);
calc[1]=deep[1]=1,dfs1(1),dfs2(1,1);build(1,n,1);
for(re int i=1;i<=m;i++)
q[i].x=read(),q[i].y=read(),q[i].rk=i;
std::sort(q+1,q+m+1,cmp);int now=1;
for(re int i=1;i<=n;i++) {
modify(i);
while(now<=m&&q[now].x==i)
Ans[q[now].rk]=ask(q[now].y),now++;
}
for(re int i=1;i<=m;i++) printf("%d\n",Ans[i]);
return 0;
}
「GXOI / GZOI2019」旧词的更多相关文章
- 【LOJ】#3088. 「GXOI / GZOI2019」旧词
LOJ#3088. 「GXOI / GZOI2019」旧词 不懂啊5e4感觉有点小 就是离线询问,在每个x上挂上y的询问 然后树剖,每个节点维护轻儿子中已经被加入的点的个数个数乘上\(dep[u]^{ ...
- LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)
题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...
- 「GXOI / GZOI2019」简要题解
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...
- LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位
#3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...
- Loj #3085. 「GXOI / GZOI2019」特技飞行
Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...
- 【LOJ】#3087. 「GXOI / GZOI2019」旅行者
LOJ#3087. 「GXOI / GZOI2019」旅行者 正着求一遍dij,反着求一遍,然后枚举每条边,从u到v,如果到u最近的点和v能到的最近的点不同,那么可以更新答案 没了 #include ...
- 【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症
LOJ#3086. 「GXOI / GZOI2019」逼死强迫症 这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j 列出矩阵转移 这样会算重两个边相邻的,只要算出斐波那契数 ...
- 【LOJ】#3085. 「GXOI / GZOI2019」特技飞行
LOJ#3085. 「GXOI / GZOI2019」特技飞行 这显然是两道题,求\(C\)是一个曼哈顿转切比雪夫后的线段树扫描线 求\(AB\),对向交换最大化和擦身而过最大化一定分别为最大值和最小 ...
- 【LOJ】#3083. 「GXOI / GZOI2019」与或和
LOJ#3083. 「GXOI / GZOI2019」与或和 显然是先拆位,AND的答案是所有数字为1的子矩阵的个数 OR是所有的子矩阵个数减去所有数字为0的子矩阵的个数 子矩阵怎么求可以记录每个位置 ...
随机推荐
- Java Swing实战(五)表格组件JTable(1)
dbPanel面板的配置告一段落. 接下来配置taskPanel 面板. /** * @author: lishuai * @date: 2018/11/26 13:51 */ public clas ...
- MVC,MVP 和 MVVM 的图示(转)
作者: 阮一峰 日期: 2015年2月 1日 转自:http://www.ruanyifeng.com/blog/2015/02/mvcmvp_mvvm.html 复杂的软件必须有清晰合理的架构,否则 ...
- 深入理解MyBatis的原理:整个体系
前言:工作中虽然用到了 MyBatis,可完全不知道为什么,再不学习就晚了,这里将记录我的学习笔记,整个 MyBatis 的体系. 一.简介 1.传统的JDBC JDBC 是一种典型的桥接模式. 使用 ...
- Notepad++怎么使用正则替换
前言:工作中在oracle中写触发器的sql时,表字段有几十个,修改起来非常不方便,于是采用了Notepad++的替换 案例: 想把 v_update_time,v_create_time,v_rcv ...
- app判断链接参数后缀跳转不同地址
http://testhf.irongbei.com/DoubleAct/index?from=app <?php $urlp = (isset($_GET['from']) && ...
- html-使用表单标签实现注册页面
案例说明: - 使用表格实现页面效果 - 超链接不想要有效果,使用href="#" - 如果表格里面的单元格没有内容,使用空格作为占位符 - 使用图片标签提交表单 <in ...
- Mysql 删除数据表的三种方式详解
用法: 1.当你不再需要该表时, 用 drop; 2.当你仍要保留该表,但要删除所有记录时, 用 truncate; 3.当你要删除部分记录或者有可能会后悔的话, 用 delete. 删除强度:dro ...
- 区别String、StringBuilder、Stringbuffer的总结
1.三者在执行速度上: StringBuilder > StringBuffer > String 2. String:不可变长字符串 StringBuilder : 为可变长字符串 St ...
- 阿里云短信服务Java版
短信服务管理平台 https://dysms.console.aliyun.com/dysms.htm java短信发送API https://help.aliyun.com/document_ ...
- 132.1.001 Union-Find | 并查集
@(132 - ACM | 算法) Algorithm | Coursera - by Robert Sedgewick > Tip: Focus on WHAT is really impor ...