Description

小Q的工作是采摘花园里的苹果。在花园中有n棵苹果树以及m条双向道路,苹果树编号依次为1到n,每条道路的两端连接着两棵不同的苹果树。假设第i棵苹果树连接着d_i条道路。小Q将会按照以下方式去采摘苹果:

1.小Q随机移动到一棵苹果树下,移动到第i棵苹果树下的概率为d_i/(2m),但不在此采摘。

2.等概率随机选择一条与当前苹果树相连的一条道路,移动到另一棵苹果树下。

3.假设当前位于第i棵苹果树下,则他会采摘a_i个苹果,多次经过同一棵苹果树下会重复采摘。

4.重复第2和3步k次。

请写一个程序帮助计算小Q期望摘到多少苹果。

Input

第一行包含三个正整数n,m,k(n,k<=100000,m<=200000),分别表示苹果树和道路的数量以及重复步骤的次数。

第二行包含n个正整数,依次表示a_1,a_2,...,a_n(1<=a_i<=100)。

接下来m行,每行两个正整数u,v(1<=u,v<=n,u!=v),表示第u和第v棵苹果树之间存在一条道路。

Output

若答案为P/Q,则输出一行一个整数,即P*Q^ {-1} mod 1000000007(10^9+7)。

Sample Input

3 4 2

2 3 4

1 2

1 2

2 3

3 1

Sample Output

750000011

// 期望为5.75=23/4=(23*250000002) mod 1000000007=750000011。

Solution

这是一道性质题

首先我们把题目中的每一条无向边变成相应的两条有向边

我们设 \(f(i,j)\) ,表示第 \(i\) 次操作到了 \(j\) 号点的概率, \(d(i)\) 表示 \(i\) 点的出度数,也是入度数(两者相等)

那么显然有

\(f(i,j)=\sum_{(u,j) \in E}\frac{f(i-1,u)}{d(u)}\)

\(ans=\sum_{i=1}^n\sum_{j=1}^{k}f(j,i)*A(i)\)

然后我们开始观察

对于所有的 \(i\) ,必然 \(f(0,i)=\frac{d(i)}{2m}\)

因为边是有向的(转化后),所以走一条边的概率就等于这条边的出发点的概率除以它的出度度数

所以第一次走边的时候,每一条边被走到的概率就为 \(\frac{d(i)}{2m}*\frac{1}{d(i)}=\frac{1}{2m}\)

然后我们就可以推 \(f(1,i)\), \(f(1,i)=\frac{d(i)}{2m}\),因为在第一次操作中,所有指向 \(i\) 的边被走到的概率都是 \(\frac{1}{2m}\) ,而 \(i\) 有 \(d(i)\) 个入度,所以走到 \(i\) 的概率就是 \(\frac{1}{2m}\)

然后同理一直推(其实是一模一样的过程),我们就知道对于任意的 \(f(i,j)\) , \(f(i,j)\) 都等于 \(\frac{d(j)}{2m}\)

所以

\(ans=\sum_{i=1}^n\sum_{j=1}^{k}f(j,i)*A(i)=k\sum_{i=1}^n\frac{d(i)*A(i)}{2m}\)

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=100000+10,Mod=1e9+7;
ll n,m,k,A[MAXN],degree[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline ll qexp(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%Mod;
a=a*a%Mod;
b>>=1;
}
return res;
}
int main()
{
read(n);read(m);read(k);
for(register int i=1;i<=n;++i)read(A[i]);
for(register int i=1;i<=m;++i)
{
int u,v;
read(u);read(v);
degree[u]++;degree[v]++;
}
ll ni=qexp(2*m,Mod-2);
ll ans=0;
for(register int i=1;i<=n;++i)(ans+=A[i]*degree[i]%Mod*ni%Mod)%=Mod;
(ans*=k)%=Mod;
write(ans,'\n');
return 0;
}

【刷题】BZOJ 5091 [Lydsy1711月赛]摘苹果的更多相关文章

  1. bzoj 5091: [Lydsy0711月赛]摘苹果

    5091: [Lydsy0711月赛]摘苹果 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 148  Solved: 114[Submit][Statu ...

  2. BZOJ5091: [Lydsy1711月赛]摘苹果(简单概率)

    5091: [Lydsy1711月赛]摘苹果 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 214  Solved: 163[Submit][Statu ...

  3. bzoj5091 [Lydsy1711月赛]摘苹果 概率题

    [Lydsy1711月赛]摘苹果 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 174  Solved: 135[Submit][Status][Dis ...

  4. BZOJ5091: [Lydsy1711月赛]摘苹果

    BZOJ5091: [Lydsy1711月赛]摘苹果 https://lydsy.com/JudgeOnline/problem.php?id=5091 分析: 点\(x\)第\(1\)次选中的概率是 ...

  5. BZOJ5091: [Lydsy1711月赛]摘苹果【期望DP】

    Description 小Q的工作是采摘花园里的苹果.在花园中有n棵苹果树以及m条双向道路,苹果树编号依次为1到n,每条道路的两 端连接着两棵不同的苹果树.假设第i棵苹果树连接着d_i条道路.小Q将会 ...

  6. bzoj 5092 [Lydsy1711月赛]分割序列 贪心高维前缀和

    [Lydsy1711月赛]分割序列 Time Limit: 5 Sec  Memory Limit: 256 MBSubmit: 213  Solved: 97[Submit][Status][Dis ...

  7. bzoj 5094 [Lydsy1711月赛]硬盘检测 概率dp

    [Lydsy1711月赛]硬盘检测 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 273  Solved: 75[Submit][Status][Dis ...

  8. bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数

    [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][D ...

  9. bzoj 5092: [Lydsy1711月赛]分割序列

    5092: [Lydsy1711月赛]分割序列 Time Limit: 5 Sec  Memory Limit: 256 MBSubmit: 219  Solved: 100[Submit][Stat ...

随机推荐

  1. pdo的用处,用法

    PDO主要是用来对数据库进行访问的.PDO扩展为PHP访问数据库定义了一个轻量级的一致接口,不同数据库在访问时,采用相同方法名称,解决了连接数据库不统一问题.PDO扩展自身并不能实现任何数据库功能,必 ...

  2. iFIERO - (一) 宇宙大战 SPACE BATTLE — 场景SCENE、SpriteKit精灵、PARTICLE粒子及背景音乐

    开始游戏教程前,首先介绍一下SpriteKit是什么?SpriteKit提供了一个图形渲染和动画的基础结构,你可以使用它让任意类型的纹理图片或者精灵动起来.SpriteKit使用渲染循环,利用图形硬件 ...

  3. grok正则

    USERNAME [a-zA-Z0-9._-]+ USER %{USERNAME} INT (?:[+-]?(?:[0-9]+)) BASE10NUM (?<![0-9.+-])(?>[+ ...

  4. 匹配追踪算法(MP)简介

    图像的稀疏表征 分割原始图像为若干个\[\sqrt{n} \times \sqrt{n}\]的块. 这些图像块就是样本集合中的单个样本\(y = \mathbb{R}^n\). 在固定的字典上稀疏分解 ...

  5. Solidity 神器Remix

    1 功能 这里我们使用在线编译器,打开网址 https://ethereum.github.io/browser-solidity 1.1 文件夹管理 最左边是文件夹管理,里面列出了当前工作区里的文件 ...

  6. getField()与getDeclaredField()的区别

    Java的反射机制中,用Class的getField(String name)或getDelaredField(String name)可以得到目标类的指定属性,返回类型是Field. 但这两个是有区 ...

  7. Mac 终端快捷键

    ctrl+A           跳转到行开头 ctrl+E           跳转到行结尾 ctrl+U           清空当前行 Command+K 清屏 Command+→多终端页面跳转 ...

  8. split命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/lkforce/article/details/71547313 Linux中的文件,特别是日志文件,特别大了不好打开,可以 ...

  9. 欢迎来怼--第二十二次Scrum会议

    欢迎来怼--第二十二次Scrum会议 一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/10 17: ...

  10. Java程序设计第四次实验报告

    北京电子科技学院(BESTI) 实     验    报     告 课程:java程序设计 班级:1352  姓名:何伟钦  学号:20135223 成绩:            指导教师:娄嘉鹏 ...