BZOJ 1007 水平可见直线 | 计算几何
BZOJ 1007 水平可见直线
题面
平面直角坐标系上有一些直线,请求出在纵坐标无限大处能看到哪些直线。
题解
将所有直线按照斜率排序(平行的直线只保留最高的直线),维护一个栈,当当前直线与栈顶直线的交点在栈顶两条直线的交点的左边,则弹出栈顶元素。可以画图证明这是正确的(因为我们要维护一个下凸的图形)。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = 50005;
int n, top, idx, ans[N];
struct Line {
int id;
double k, b;
bool operator < (const Line &obj) const{
return k != obj.k ? k < obj.k: b < obj.b;
}
} raw[N], line[N], stk[N];
double getx(const Line &A, const Line &B){
return (B.b - A.b) / (A.k - B.k);
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++)
raw[i].id = i, scanf("%lf%lf", &raw[i].k, &raw[i].b);
sort(raw + 1, raw + n + 1);
line[idx = 1] = raw[1];
for(int i = 2; i <= n; i++)
line[raw[i].k == raw[i - 1].k ? idx: ++idx] = raw[i];
for(int i = 1; i <= idx; i++){
while(top > 1 && getx(line[i], stk[top]) <= getx(stk[top], stk[top - 1])) top--;
stk[++top] = line[i];
}
for(int i = 1; i <= top; i++) ans[i] = stk[i].id;
sort(ans + 1, ans + top + 1);
for(int i = 1; i <= top; i++) printf("%d ", ans[i]);
puts("");
return 0;
}
BZOJ 1007 水平可见直线 | 计算几何的更多相关文章
- BZOJ 1007 水平可见直线
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- bzoj 1007 : [HNOI2008]水平可见直线 计算几何
题目链接 给出n条直线, 问从y轴上方向下看, 能看到哪些直线, 输出这些直线的编号. 首先我们按斜率排序, 然后依次加入一个栈里面, 如果刚加入的直线, 和之前的那条直线斜率相等, 那么显然之前的会 ...
- BZOJ 1007 HNOI 2008 水平可见直线 计算几何+栈
题目大意:给出一些笛卡尔系中的一些直线,问从(0,+∞)向下看时能看到哪些直线. 思路:半平面交可做,可是显然用不上. 类似于求凸包的思想,维护一个栈. 先将全部直线依照k值排序.然后挨个压进去,遇到 ...
- BZOJ 1007 [HNOI2008]水平可见直线 ——计算几何
用了trinkle的方法,半平面交转凸包. 写了一发,既没有精度误差,也很好写. #include <map> #include <ctime> #include <cm ...
- 【BZOJ】1007 水平可见直线
[分析] 维护一个下凸包. 首先依照斜率来从小到大排序. 考虑斜率同样的,肯定仅仅能选截距大的,把截距小的给筛掉. 然后用栈来维护下凸包.先压入前两条直线. 然后对于每一条直线i,设栈中上一条直线p= ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- 【BZOJ】【1007】【HNOI2008】水平可见直线
计算几何初步 其实是维护一个类似下凸壳的东西?画图后发现其实斜率是单调递增的,交点的横坐标也是单调递增的,所以排序一下搞个单调栈来做就可以了…… 看了hzwer的做法…… /************* ...
随机推荐
- leetcode刷题笔记191 位1的个数
题目描述: 编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量). 示例: 输入: 输出: 解释: 32位整数 的二进制表示为 . 题目分析: 判断3 ...
- 文本编辑器 vi/vim 的使用
文本编辑器 vi/vim 一.启动与退出 1. vim 2. vim 文件名(可以是存在的文件,也可以是不在的文件) 3.退出 :q 或者:x 在非“插入”模式二.vi/vim的工作模式 1.正常 ...
- vue项目部署流程
用vue-cli搭建的做法1.npm run build2.把dist里的文件打包上传至服务器 例 /data/www/,我一般把index.html放在static里所以我的文件路径为:/data/ ...
- nodejs 服务器实现区分多客户端请求服务
初始实现 var net = require('net');//1 引入net模块 var chatServer = net.createServer();//创建net服务器 var clientL ...
- Spring自定义标签解析与实现
在Spring Bean注册解析(一)和Spring Bean注册解析(二)中我们讲到,Spring在解析xml文件中的标签的时候会区分当前的标签是四种基本标签(import.alias ...
- url的param与dict转换
urllib.parse.urlencode urlencode from urllib import parse from urllib.request import urlopen from ur ...
- 微信公众号开发笔记1(nodejs开发)
本篇记录了微信公众号开发的一些笔记 一.微信服务器与我们服务器的交流 微信开发者拥有自己的服务器,在我们服务器上可以与微信服务器进行交流.既然可以交流,那就必定需要前提条件(微信认证),也就是说,只有 ...
- Visual Studio win平台 AI环境搭建
内容提要:我觉得难点主要出在下载上,程序跑的都挺流畅的.下载有时会失败. 1.下载安装git.这一步主要为了下载示例和自动安装环境的python代码,直接去github上用网页下载也是一样的,git不 ...
- "Hello World!"团队负责人领跑衫感言
时间:2017年12月7日 团队名称:“Hello World!” 团队项目:空天猎 团队成员:陈建宇(项目负责人).刘淑霞.黄泽宇.方铭.贾男男.刘耀泽.刘成志 感言正文: 记<软件工程> ...
- java把map转json
JSONUtils.toJSONString(requestMap); com.alibaba.fastjson.JSON <!-- https://mvnrepository.com/a ...