题解

我们发现每次决策的时候,我们可以判断某个点的决策,至少小于等于几个点或者至少大于等于几个点

我们求最大值

dp[u][1 / 0]

dp[u][1]表示u这个点先手,至少大于等于几个点

dp[u][0]表示u这个点后手走,至少大于等于几个点

转移的时候从dp[u][1]取所有点dp[v][0]最小的那个

dp[u][0]就是所有dp[v][1]的和

最小值

dp[u][1]表示u这个点先手,至少小于等于几个点

dp[u][0]表示u这个点后手,至少小于等于几个点

转移的时候dp[u][0]取所有dp[v][1]最小的那个

dp[u][1]是所有dp[v][1]的和

统计的叶子的时候有个trick就是,一条链的话,根节点点度为1,不算叶子

同时特判只有一个点的情况

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 200005
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M;
struct node {
int to,next;
}E[MAXN * 2];
int head[MAXN],sumE,D[MAXN],dp[MAXN][2];
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
void Init() {
read(N);
int u,v;
for(int i = 1 ; i < N ; ++i) {
read(u);read(v);add(u,v);add(v,u);
D[u]++;D[v]++;
}
for(int i = 2 ; i <= N ; ++i) {
if(D[i] == 1) ++M;
}
}
void dfs1(int u,int fa) {
int son = 0;
dp[u][1] = M;dp[u][0] = 0;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != fa) {
dfs1(v,u);++son;
dp[u][1] = min(dp[v][0],dp[u][1]);
dp[u][0] += dp[v][1];
}
}
if(son == 0) dp[u][1] = dp[u][0] = 1;
}
void dfs2(int u,int fa) {
int son = 0;
dp[u][0] = M;dp[u][1] = 0;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != fa) {
dfs2(v,u);++son;
dp[u][1] += dp[v][0];
dp[u][0] = min(dp[v][1],dp[u][0]);
}
}
if(son == 0) dp[u][1] = dp[u][0] = 1;
}
void Solve() {
if(M <= 1) {
out(1);space;out(1);enter;
return;
}
memset(dp,0,sizeof(dp));
dfs1(1,0);
out(M - dp[1][1] + 1);space;
memset(dp,0,sizeof(dp));
dfs2(1,0);
out(dp[1][1]);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}

【51nod】1531 树上的博弈的更多相关文章

  1. codevs 1421 秋静叶&秋穣子(树上DP+博弈)

    1421 秋静叶&秋穣子   题目描述 Description 在幻想乡,秋姐妹是掌管秋天的神明,作为红叶之神的姐姐静叶和作为丰收之神的妹妹穰子.如果把红叶和果实联系在一 起,自然会想到烤红薯 ...

  2. 51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径

    51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径 题面 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即 ...

  3. [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)

    [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...

  4. Atcoder #017 agc017 D.Game on Tree 树上NIM 博弈

    LINK 题意:树上NIM的模板题,给出一颗树,现有操作删去端点不为根节点的边,其另一端节点都将被移除,不能取者为败 思路:一看就是个NIM博弈题,只是搬到树上进行,树上DFS进行异或 记得#014D ...

  5. #417 Div2 E (树上阶梯博弈)

    #417 Div2 E 题意 给出一颗苹果树,设定所有叶子节点的深度全是奇数或偶数,并且包括根在内的所有节点上都有若干个苹果. 两人进行游戏,每回合每个人可以做下列两种操作中的一种: 每个人可以吃掉某 ...

  6. 51nod 1963 树上Nim

    这题还真就是树上玩 Nim... 相关知识点就是阶梯博弈,具体可以康这里 →_→ PS:手动搜索阶梯博弈 然后这题就转化为了多路径的阶梯博弈,这样的话咱定义根节点深度为 0,然后把所有奇数深度点的权值 ...

  7. 51Nod 1766 树上的最远点对

    Description 一棵树,询问两个端点编号分别在在 \([a,b]\) 和 \([c,d]\) 两个区间中的最长链. Sol 线段树+ST表. 树上最长链可以合并,只需要合并两个区间最长链的两个 ...

  8. LightOJ 1355 :Game of CS(树上green博弈)

    Jolly and Emily are two bees studying in Computer Science. Unlike other bees they are fond of playin ...

  9. 51nod 1605 棋盘问题 (博弈)

    题目:传送门. 题意:中文题.T组数据,每组给定一个n*m的棋盘,棋盘中的1代表黑色,0代表白色,每次可以将1或者非2质数的全黑色方形区域变为白色,不能操作者输,问谁能赢. 题解:每次可以将1或者非2 ...

随机推荐

  1. 动态规划:树形DP-选课(树形背包)

    学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修了这M门课并考核通过就能获得相应的学分.在选修课程中,有些课程可以直接选修,有些课程需要一定的基础知识,必须在选 ...

  2. wait&waitpid状态值

    [wait&waitpid状态值] 1.  python 中 os.system 的返回值的format与wait的返回值status一致: On Unix, the return value ...

  3. 如何给自己的PHP项目制作安装程序

    最近很是激动啊,现在的自己还是和当初刚刚学习程序的时候一样,虽然现在回头一看自己写过的程序,都非常的小孩子和漏洞百出,也没有太多的考虑效率和安全,但是还是每次写出了新的程序或系统,都是抱着一种马上拿着 ...

  4. Nginx upstream的5种权重分配方式【转】

    原文地址:Nginx upstream的5种权重分配方式 1.轮询(默认) 每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除. 2.weight指定轮询几率,weig ...

  5. HDU 1069 Monkey and Banana(最长递减子序列)

    题目链接 题意:摞长方体,给定长方体的长宽高,个数无限制,可随意翻转,要求下面的长方体的长和宽都大于上面的,都不能相等,问最多能摞多高. 题解:个数无限,其实每种形态最多就用一次,把每种形态都单独算一 ...

  6. 用jsx语法写iview事件

    普通的vue事件,在jsx中写法为 on+方法名(首字母大写) . 如:onClick={....}.onChange={....}.onBlur={....} iview中的事件,在vue中默认是 ...

  7. 形参前的&&啥意思?

    C++2011标准的 右值引用 语法 去搜索“c++11右值引用” 右值引用,当传入临时对象时可以避免一次拷贝. 右值引用.举个例子 C/C++ code   ? 1 2 3 4 5 6 7 8 // ...

  8. Flask:文件配置方式实践及其中的各种问题记录

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2, 提示: 1.请查看本文后面的“18-07-17  11:18重大纠正” ! 2.flask run命令运行时传入参数 ...

  9. 【前端开发】限制input输入保留两位小数

    <input type="text" name='amount' id="cash_num" placeholder="请输入金额" ...

  10. 如何阻止点击scrollviewer里面的单位内容时,自动滚动

    <Style TargetType="{x:Type ListBoxItem}"> <Setter Property="FocusVisualStyle ...