https://www.luogu.org/problemnew/show/P4492

找每个编号的点的父边的贡献,组合数和阶乘就能算了。

我考场上怎么就是没想到呢。

调了好久好久好久好久调不出来,样例一直过不了,刚刚发现是乘的时候没有%好溢出了,我是个zz。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
using namespace std;
#define LL long long
LL n;LL p;
LL f[][]={};
LL zu[][]={};
LL t[]={};
int main(){
scanf("%lld%lld",&n,&p);
LL ans=; zu[][]=; t[]=;
for(LL i=;i<=n;i++)t[i]=(t[i-]*i)%p;
for(LL i=;i<=n;i++){
zu[i][]=;
for(LL j=;j<=i;j++)zu[i][j]=(zu[i-][j]+zu[i-][j-])%p;
}
for(LL i=;i<=n;i++){
f[i][]=;
for(int j=;j<=n;j++){
f[i][j]=(f[i][j-]*(i+j-))%p;
}
}
for(LL i=;i<=n;i++){
for(LL j=n-i+;j>;j--){
LL w=(zu[n-i][j-]*t[j])%p;
w=(w*((t[i]*f[i-][n-i-j+])%p))%p;
w=(w*((j*(n-j))%p))%p;
ans=(ans+w)%p;
}
}
printf("%lld\n",ans);
return ;
}

Luogu 4492 [HAOI2018]苹果树 组合数的更多相关文章

  1. 洛谷P4492 [HAOI2018]苹果树(组合数)

    题意 题目链接 Sol 有点自闭,.我好像对组合数一窍不通(~~~~) Orz shadowice // luogu-judger-enable-o2 #include<bits/stdc++. ...

  2. [BZOJ5305][Haoi2018]苹果树 组合数

    题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...

  3. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  4. [洛谷P4492] [HAOI2018]苹果树

    洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...

  5. [HAOI2018]苹果树(组合数学,计数)

    [HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...

  6. [Luogu 3414]SAC#1 - 组合数

    Description 辣鸡蒟蒻SOL是一个傻逼,他居然觉得数很萌! 今天他萌上了组合数.现在他很想知道simga(C(n,i))是多少:其中C是组合数(即C(n,i)表示n个物品无顺序选取i个的方案 ...

  7. 解题:HAOI2018 苹果树

    题面 统计贡献,每个大小为i的子树贡献就是$i(n-i)$,然后子树里又有$i!$种:同时这个子树的根不确定,再枚举这个根是$r$个放的,又有了$r!$种.子树内选点的方式因为子树的根被钦定了顺序所以 ...

  8. luoguP4492 [HAOI2018]苹果树 组合计数 + dp

    首先,每个二叉树对应着唯一的中序遍历,并且每个二叉树的概率是相同的 这十分的有用 考虑\(dp\)求解 令\(f_i\)表示\(i\)个节点的子树,根的深度为\(1\)时,所有点的期望深度之和(乘\( ...

  9. Luogu 4491 [HAOI2018]染色

    BZOJ 5306 考虑计算恰好出现$s$次的颜色有$k$种的方案数. 首先可以设$lim = min(m, \left \lfloor \frac{n}{s} \right \rfloor)$,我们 ...

随机推荐

  1. dump函数

    一.函数标准格式: DUMP(expr[,return_fmt[,start_position][,length]]) 基本参数时4个,最少可以填的参数是0个.当完全没有参数时,直接返回null.另外 ...

  2. 关于注入抽象类报could not autowire field的问题

    昨天工作中遇到了一个很奇葩的问题,之前一直都没考虑过抽象类这块,一直用的注入接口实现类: 先看下错误: 因为在类中注入了一个抽象类,之前只有一个继承子类,所以没问题,这里要说一下抽象类的实例化: 抽象 ...

  3. required_new spring事务传播行为无效碰到的坑!

    在测试事务传播行为的时候,因为用了同一个service中的方法测试,所以不管怎么设置都无效了: 原因是aop动态代理只会拦截一次执行方法,第二个方法是照搬的,只要调用其他service中的事务方法,传 ...

  4. 【Python学习笔记】使用Python进行T检验

    使用Python进行T检验 所需要用到的第三方库有scipy. 均可以通过pip直接安装. pip install scipy numpy 引入第三方库 from scipy import stats ...

  5. MySQL服务器修改主机名后问题解决

    1.单机MySQL主机名修改 今天无事看到自己的主机名不对,于是改了一下,以便区分服务器,那只重启MySQL时出现下面错误: MySQL manager or server PID file coul ...

  6. 六、springcloud之配置中心Config

    一.配置中心提供的核心功能 Spring Cloud Config为服务端和客户端提供了分布式系统的外部化配置支持.配置服务器为各应用的所有环境提供了一个中心化的外部配置.它实现了对服务端和客户端对S ...

  7. 转载: 开源整理:Android App新手指引开源控件

    http://blog.coderclock.com/2017/05/22/android/open-source-android-app-guide-view-library/ 开源整理:Andro ...

  8. 使用PyMongo访问需要认证的MongoDB

    Windows 10家庭中文版,Python 3.6.4,PyMongo 3.7.0,MongoDB 3.6.3,Scrapy 1.5.0, 前言 在Python中,使用PyMongo访问Mongod ...

  9. TypeScript的配置文件 tsconfig.json

    //tsconfig.json指定了用来编译这个项目的根文件和编译选项 { "compilerOptions": { //compilerOptions:编译选项,可以被忽略,这时 ...

  10. tensorflow高级库

    1.tf.app.flags tf定义了tf.app.flags,用于支持接受命令行传递参数,相当于接受argv.tf.app.flags.DEFINE_xxx()就是添加命令行的optional a ...