不算很难的一道题吧....

很容易想到枚举断点,之后需要处理出以$i$为开头的最长回文串的长度和以$i$为结尾的最长回文串的长度

分别记为$L[i]$和$R[i]$

由于求$R[i]$相当于把$L[i]$反过来求一遍,因此只需考虑求$L[i]$

考虑$manacher$算法

我们注意到,当$mr$扩展时,第一个把$mr$扩展到$i$的中心$j$构成的串就是$L[i]$

在$manacher$算法中统计一下即可

复杂度$O(n)$

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) const int sid = 2e5 + 1e4; char s[sid], t[sid];
int n, m, r[sid], L[sid], R[sid]; void manacher(char *s, int *lst, int opt) {
r[] = ; lst[] = ;
int mr = , pos = ;
rep(i, , m) {
r[i] = min(mr - i + , r[pos + pos - i]);
while(i - r[i] > && s[i + r[i]] == s[i - r[i]])
lst[i + r[i]] = * r[i] + , r[i] ++;
if(i + r[i] - > mr) mr = i + r[i] - , pos = i;
}
if(opt) reverse(lst + , lst + m + );
} int main() {
scanf("%s", s + );
n = strlen(s + ); rep(i, , n) t[++ m] = '#', t[++ m] = s[i];
t[++ m] = '#'; reverse(t + , t + m + );
manacher(t, R, );
reverse(t + , t + m + );
manacher(t, L, ); int ans = ;
rep(i, , m)
if(t[i] == '#')
ans = max(ans, (L[i] + R[i] - ) / );
printf("%d\n", ans);
return ;
}

luoguP4555 [国家集训队]最长双回文串 manacher算法的更多相关文章

  1. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  2. [国家集训队]最长双回文串 manacher

    ---题面--- 题解: 首先有一个直观的想法,如果我们可以求出对于位置i的最长后缀回文串和最长前缀回文串,那么我们枚举分界点然后合并前缀和后缀不就可以得到答案了么? 所以我们的目标就是求出这两个数列 ...

  3. 洛谷P4555 [国家集训队]最长双回文串(manacher 线段树)

    题意 题目链接 Sol 我的做法比较naive..首先manacher预处理出以每个位置为中心的回文串的长度.然后枚举一个中间位置,现在要考虑的就是能覆盖到i - 1的回文串中 中心最靠左的,和能覆盖 ...

  4. P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 manacher 用manacher在处理时顺便把以某点开头/结尾的最长回文串的长度也处理掉. 然后枚举. #include<iostream> # ...

  5. 洛谷 P4555 [国家集训队]最长双回文串 解题报告

    P4555 [国家集训队]最长双回文串 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为\(n\)的串 ...

  6. Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串

    题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...

  7. 【洛谷】P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 题源:https://www.luogu.com.cn/problem/P4555 原理:Manacher 还真比KMP好理解 解决最长回文串问题 转化为长度为 ...

  8. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

  9. Manacher【p4555】 [国家集训队]最长双回文串

    题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为 n 的串 S ,求 S 的最长双回文子串 T ,即可 ...

随机推荐

  1. python正则表达式-re模块的爱恨情仇

    利用python的re模块,使用正则表达式对字符串进行处理 # 编辑者:闫龙 import re restr = "abccgccc123def456ghi789jgkl186000&quo ...

  2. C# Json字符串反序列化

    using DevComponents.DotNetBar; using MyControl; using Newtonsoft.Json; using System; using System.Co ...

  3. JavaScript的基本概念

    主要内容: 语法 数据类型 流控制语句 理解函数 ECMA-262描述了JavaScript语法等基本概念.目前,ECMA-262第3版中定义的ECMAScript是各个浏览器实现最多的版本.所以主要 ...

  4. VUE常用指令总结!

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. UNIX环境高级编程 第8章 进程控制

    本章是UNIX系统中进程控制原语,包括进程创建.执行新程序.进程终止,另外还会对进程的属性加以说明,包括进程ID.实际/有效用户ID. 进程标识 每个进程某一时刻在系统中都是独一无二的,它们之间是用一 ...

  6. 用Nginx分流绕开Github反爬机制

    用Nginx分流绕开Github反爬机制 0x00 前言 如果哪天有hacker进入到了公司内网为所欲为,你一定激动地以为这是一次蓄谋已久的APT,事实上,还有可能只是某位粗线条的员工把VPN信息泄露 ...

  7. asp.net mvc发送邮件

    参考文献: 第一篇:http://www.cnblogs.com/qinpengming/archive/2011/06/08/2075040.html 第二篇:http://www.cnblogs. ...

  8. shell函数-页面跳转练习->

    实现思维导图-> 实现思路-> 分析:1:先把三个页面的流程作为函数先写下来,定义在脚本的开头,方便下面的调用.2:先从一个流 程开始做,其他的流程类似,比如nginx3:整体实现思路是 ...

  9. ksh函数

    在不同的shell环境里,shell脚本的写法是不同的 此链接为ksh环境的函数写法: https://blog.csdn.net/shangboerds/article/details/487115 ...

  10. 【小程序开发】上拉加载更多demo

    wxml: <scroll-view class='swiper-scroll' scroll-y="{{true}}" bindscrolltolower="lo ...