不算很难的一道题吧....

很容易想到枚举断点,之后需要处理出以$i$为开头的最长回文串的长度和以$i$为结尾的最长回文串的长度

分别记为$L[i]$和$R[i]$

由于求$R[i]$相当于把$L[i]$反过来求一遍,因此只需考虑求$L[i]$

考虑$manacher$算法

我们注意到,当$mr$扩展时,第一个把$mr$扩展到$i$的中心$j$构成的串就是$L[i]$

在$manacher$算法中统计一下即可

复杂度$O(n)$

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) const int sid = 2e5 + 1e4; char s[sid], t[sid];
int n, m, r[sid], L[sid], R[sid]; void manacher(char *s, int *lst, int opt) {
r[] = ; lst[] = ;
int mr = , pos = ;
rep(i, , m) {
r[i] = min(mr - i + , r[pos + pos - i]);
while(i - r[i] > && s[i + r[i]] == s[i - r[i]])
lst[i + r[i]] = * r[i] + , r[i] ++;
if(i + r[i] - > mr) mr = i + r[i] - , pos = i;
}
if(opt) reverse(lst + , lst + m + );
} int main() {
scanf("%s", s + );
n = strlen(s + ); rep(i, , n) t[++ m] = '#', t[++ m] = s[i];
t[++ m] = '#'; reverse(t + , t + m + );
manacher(t, R, );
reverse(t + , t + m + );
manacher(t, L, ); int ans = ;
rep(i, , m)
if(t[i] == '#')
ans = max(ans, (L[i] + R[i] - ) / );
printf("%d\n", ans);
return ;
}

luoguP4555 [国家集训队]最长双回文串 manacher算法的更多相关文章

  1. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  2. [国家集训队]最长双回文串 manacher

    ---题面--- 题解: 首先有一个直观的想法,如果我们可以求出对于位置i的最长后缀回文串和最长前缀回文串,那么我们枚举分界点然后合并前缀和后缀不就可以得到答案了么? 所以我们的目标就是求出这两个数列 ...

  3. 洛谷P4555 [国家集训队]最长双回文串(manacher 线段树)

    题意 题目链接 Sol 我的做法比较naive..首先manacher预处理出以每个位置为中心的回文串的长度.然后枚举一个中间位置,现在要考虑的就是能覆盖到i - 1的回文串中 中心最靠左的,和能覆盖 ...

  4. P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 manacher 用manacher在处理时顺便把以某点开头/结尾的最长回文串的长度也处理掉. 然后枚举. #include<iostream> # ...

  5. 洛谷 P4555 [国家集训队]最长双回文串 解题报告

    P4555 [国家集训队]最长双回文串 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为\(n\)的串 ...

  6. Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串

    题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...

  7. 【洛谷】P4555 [国家集训队]最长双回文串

    P4555 [国家集训队]最长双回文串 题源:https://www.luogu.com.cn/problem/P4555 原理:Manacher 还真比KMP好理解 解决最长回文串问题 转化为长度为 ...

  8. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

  9. Manacher【p4555】 [国家集训队]最长双回文串

    题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为 n 的串 S ,求 S 的最长双回文子串 T ,即可 ...

随机推荐

  1. PHP编程效率的20个要点-[转]

    用 单引号代替双引号来包含字符串,这样做会更快一些.因为PHP会在双引号包围的字符串中搜寻变量,单引号则 不会,注意:只有echo能这么做,它是一种可以把多个字符 串当作参数的“函数”(译注:PHP手 ...

  2. Android手动回收bitmap,引发Canvas: trying to use a recycled bitmap处理

    在做Android的开发的时候,在ListView 或是 GridView中需要加载大量的图片,为了避免加载过多的图片引起OutOfMemory错误,设置了一个图片缓存列表 Map<String ...

  3. javaScript书写规范

    命名规范. 常量名    全部大写并单词间用下划线分隔    如:CSS_BTN_CLOSE.TXT_LOADING对象的属性或方法名    小驼峰式(little camel-case)    如: ...

  4. [MySQL优化案例]系列 — 优化InnoDB表BLOB列的存储效率

    首先,介绍下关于InnoDB引擎存储格式的几个要点:1.InnoDB可以选择使用共享表空间或者是独立表空间方式,建议使用独立表空间,便于管理.维护.启用 innodb_file_per_table 选 ...

  5. 搭建本地git服务器

    最近因为项目需求,需要实现一个原型系统,加上后期项目需要多人协作,考虑采用了git做版本控制. 这里主要简要描述下git服务器和客户端的搭建和配置. 1.git服务器 (1)安装git sudo ap ...

  6. linux快速复制大量小文件方法 nc+tar【转】

    1,在需要对大量小文件进行移动或复制时,用cp.mv都会显得很没有效率,可以用tar先压缩再解压缩的方式.  2,在网络环境中传输时,可以再结合nc命令,通过管道和tcp端口进行传输.  nc和tar ...

  7. C#里partial关键字的作用

    1. 什么是局部类型?C# 2.0 引入了局部类型的概念.局部类型允许我们将一个类.结构或接口分成几个部分,分别实现在几个不同的.cs文件中.局部类型适用于以下情况: (1) 类型特别大,不宜放在一个 ...

  8. win7 64位mysql安装及navicat 解压版

    教程:http://jingyan.baidu.com/article/f3ad7d0ffc061a09c3345bf0.html Mysql修改设置root密码的命令及方法:http://jingy ...

  9. [NOI2014]购票 「树上斜率优化」

    首先易得方程,且经过变换有 $$\begin{aligned} f_i &= \min\limits_{dist_i - lim_i \le dist_j} \{f_j + (dist_i - ...

  10. linux用户权限 -> ACL访问控制

    UGO设置基本权限: 只能一个用户,一个组和其他人 ACL设置基本权限: r.w.x 设定acl只能是root管理员用户. 相关命令: getfacl , setfacl facl权限 简介 facl ...