举个例子

模式串S:a s d a s d a s d f a s d

匹配串T:a s d a s d f

如果使用朴素匹配算法——

1 2 3 4 5 6  8 9

a s d a s d a s d f a s d

a s d a s d f

1 2 3 4 5 6

此时,匹配到了S7和T7了,S7为a而T7为f,不匹配那么朴素的匹配算法会这么做——

1  3 4 5 6 7 8 9

a s d a s d a s d f a s d

a s d a s d f

1 2 3 4 5 6 7

这时,我们会发现,模式串回溯到了S2,而匹配串回溯到了T1。

很明显,这会极大的降低算法的效率,在最坏情况下,我们需要将模式串几乎每个元素都查询一次,而每次查询都从匹配串的串首走到接近串尾,这样的时间复杂度为n*m,其中n和m分别为模式串和匹配串的长度。

那么我们是否有可能降低时间复杂度呢?答案是肯定的——很明显我们只需要想办法减少回溯,就可以达到效果。Kmp算法就是使用这种方法节省时间的。

1 2 3 4 5 6  8 9

a s d a s d a s d f a s d

a s d a s d f

1 2 3 4 5 6 7

这个东西很熟悉吧?刚刚出现过一次。

那么,kmp算法会怎么执行下一步呢?答案如下——

1 2 3 4 5 6  8 9

a s d a s d a s d f a s d

a s d a s d f

1 2 3  5 6 7

注意这一步!这里的模式串根本没有回溯,只是将匹配串向后移动了若干步。这样,最坏情况只是将模式串走一遍,然后将匹配串走一遍,当然了,匹配串里面的部分元素会走多次,但是,很明显这种算法会将n*m降低到n+k,这个k和m内部部分元素的重复次数有关,最大不会超过n(当然这是我自己证明得到的,不一定正确,以后我还会继续证明的)。

好了,方法知道了,那么怎么实现呢?

换句话说,怎么实现迅速的移动匹配串呢?答案是——添加一个Next数组,标记匹配串中的特性。

这个Next数组的特性很明显

  1. Next[0] = -1,即这是第一个元素,前面没有可以替换它的。
  2. Next[j] = k ; { k | T[0] = T[j-k], T[1] = T[j-k+1],... , T[k-1] = T[j-1]}。
  3. Next[j] = 0; 其他情况。

举例:

匹配串T: a  s  d  a  s  d  f

Next:   -1  0  0  0  1  2  3

具体见代码——

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int N = ; char s[N], t[N];
int Next[N];
int lenS, lenT; void kmpNext(char* T) //计算Next数组
{
int i = ;
Next[] = -; //Next[0] = -1
while(i < lenT)
{
int j = ;
while(T[j] == T[i]) //Next[i] = j; { j | T[0] = T[i-j], T[1] = T[i-j+1],... , T[j-1] = T[i-1]}
{
Next[i] = j;
i++;
j++;
}
Next[i] = j; //同上,或等于0
i++;
}
} bool kmp(char* S, char* T) //kmp
{
lenS = strlen(S);
lenT = strlen(T);
kmpNext(T);
int i = , j = ;
while(i < lenS && j < lenT) //当模式串或匹配串走完时退出
{
if(j == -)
{
i++;
j = ;
}
else if(S[i] == T[j])
{
i++;
j++;
}
else j = Next[j];
}
if(j == lenT) return ; //如果匹配串走完,表示匹配串是模式串的子串
return ;
} int main()
{
//freopen("test.in", "r", stdin);
while(~scanf("%s%s", s, t))
{
if(kmp(s, t)) printf("Yes\n");
else printf("No\n");
}
return ;
}

【初识】KMP算法入门的更多相关文章

  1. 【初识】KMP算法入门(转)

    感觉写的很好,尤其是底下的公式,易懂,链接:http://www.cnblogs.com/mypride/p/4950245.html 举个例子 模式串S:a s d a s d a s d f a  ...

  2. 【面向打野编程】——KMP算法入门

    一.问题 咱们先不管什么KMP,来看看怎么匹配两个字符串. 问题:给定两个字符串,求第二个字符串是否包含于第一个字符串中. 为了具体化,我们以 ABCAXABCABCABX 与 ABCABCABX为例 ...

  3. KMP算法入门讲解

    字符串匹配问题.假设文本是一个长度为$n$的字符串$T$,模板是一个长度为$m$的字符串$P$,且$m\leq n$.需要求出模板在文本中的所有匹配点$i$,即满足$T[i]=P[0],T[I+1]= ...

  4. HDU_1711_初识KMP算法

    Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. KMP算法入门

    学一把看毛片算法我觉得自己才能变得更加出色 明明昨天的题我都知道怎么模拟了,但是还是不会改KMP,是我学丑了 KMP是Knuth-Morris-Pratt三人设计的线性时间字符串匹配算法 nxt数组的 ...

  6. KMP算法——从入门到懵逼到了解

    本博文參考http://blog.csdn.net/v_july_v/article/details/7041827 关于其它字符串匹配算法见http://blog.csdn.net/WINCOL/a ...

  7. KMP算法之从懵逼到入门

    写本文的目的: 1.加深自己的理解,以便自己日后复习 2.给看到此文的人一点启发 KMP算法看懂了就觉得特别简单,思路也好理解,但是看不懂之前,查各种资料看大佬的博客,都很懵逼...... 1.  算 ...

  8. 萌新笔记——用KMP算法与Trie字典树实现屏蔽敏感词(UTF-8编码)

    前几天写好了字典,又刚好重温了KMP算法,恰逢遇到朋友吐槽最近被和谐的词越来越多了,于是突发奇想,想要自己实现一下敏感词屏蔽. 基本敏感词的屏蔽说起来很简单,只要把字符串中的敏感词替换成"* ...

  9. KMP算法的Next数组详解

    转载请注明来源,并包含相关链接. 网上有很多讲解KMP算法的博客,我就不浪费时间再写一份了.直接推荐一个当初我入门时看的博客吧:http://www.cnblogs.com/yjiyjige/p/32 ...

随机推荐

  1. Hibernate5笔记1--Hibernate简介和第一个程序

    Hibernate简介: Hibernate是一个开放源代码的ORM(对象关系映射)框架,它对JDBC进行了非常轻量级的对象封装,使得Java程序员可以随心所欲的使用对象编程思维来操纵数据库. Hib ...

  2. 使用IntelliJ IDEA新建maven的javaWeb项目部署,启动访问index,jsp页面

    对于用惯了eclipse的人,idea其实还挺不一样的,也是摸索了很久,看了好多博客,这里就记录一下,以后肯定经常用!,不过使用熟练了,功能确实非常强大,真的牛! 1 新建maven项目,配置好目录结 ...

  3. 001_Mac键盘图标与对应快捷按键标志汇总

    Mac键盘图标与对应快捷按键 ⌘——Command () win键 ⌃ ——Control ctrl键 ⌥——Option (alt) ⇧——Shift ⇪——Caps Lock fn——功能键就是 ...

  4. python网络编程-协程(协程说明,greenlet,gevent)

    一:什么是协程 协程(Coroutine):,又称微线程.协程是一种用户态的轻量级线程.是由用户自己控制,CPU根本不知道协程存在. 协程拥有自己的寄存器上下文和栈. 协程调度切换时,将寄存器上下文和 ...

  5. python随笔(二)

    range(2,10):不包括10 range(2,10,3):步长为3 range(10,2,-1):从10到2,步长-1.

  6. Python SGMLParser 的1个BUG??

    首先说一下,我用的是python 2.7,刚好在学Python,今天想去爬点图片当壁纸,但是当我用 SGMLParser 做 <img> 标签解析的时候,发现我想要的那部分根本没获取到,我 ...

  7. mvc的cshtml Request取不到值

    如果路径为:http://localhost:2317/food/1,这时用Request["id"]是取不到值的应该用: Request.RequestContext.Route ...

  8. 更改Chrome浏览器安装位置的方法

    因为Google Chrome独特的优势,我们很多人都在使用它,但同时我们也会发现它是默认安装在我们的系统盘的,那么是否就不能修改其安装路径了呢?其实不然,这里介绍一种方法,亲测可行. 一.正常安装 ...

  9. Visual Studio Code 常用插件整理

    常用插件说明: 一.HTML Snippets 超级使用且初级的H5代码片段以及提示 二.HTML CSS Support  让HTML标签上写class智能提示当前项目所支持的样式 三.Debugg ...

  10. 【LOJ】#2289. 「THUWC 2017」在美妙的数学王国中畅游

    题解 我们发现,题目告诉我们这个东西就是一个lct 首先,如果只有3,问题就非常简单了,我们算出所有a的总和,所有b的总和就好了 要是1和2也是多项式就好了--其实可以!也就是下面泰勒展开的用处,我们 ...