poj3233 Matrix Power Series(矩阵快速幂)
题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂。
那么可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵
将 S 取幂,会发现一个特性:
Sk +1右上角那一块不正是我们要求的 A+A2+...+Ak
于是构造出 S 矩阵,然后对它求矩阵快速幂即可,最后别忘了减去一个单位阵。
时间降为O(n3log2k)
PS.减去单位矩阵的过程中要防止该位置小于零。
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 65
using namespace std;
struct mat{
long long a[maxn][maxn];
};
mat res,c;
int n,k,m;
mat mat_mul(mat &x,mat &y,int Mod){
mat ans;
memset(ans.a,,sizeof(ans.a));
for (int i=;i<*n;i++)
for (int j=;j<*n;j++)
for (int kk=;kk<*n;kk++){
ans.a[i][j]+=x.a[i][kk]*y.a[kk][j];
ans.a[i][j]%=Mod;
}
return ans;
}
void mat_pow(mat &res,int k,int Mod){
mat c=res;
k--;
while (k){
if (k&) res=mat_mul(res,c,m);
k>>=;
c=mat_mul(c,c,m);
}
}
int main(){
cin >> n >> k >> m;
memset(res.a,,sizeof(res.a));
for (int i=;i<n;i++){
for (int j=;j<n;j++){
cin >> res.a[i][j];
}
res.a[i][i+n]=res.a[i+n][i+n]=;
}
mat_pow(res,k+,m); //求出res的k+1次方
for (int i=;i<n;i++){
res.a[i][i+n]--;
while (res.a[i][i+n]<) res.a[i][i+n]+=m;
}
for (int i=;i<n;i++){
for (int j=;j<n-;j++){
cout << res.a[i][j+n] << " ";
}
cout << res.a[i][*n-] << endl;
}
return ;
}
poj3233 Matrix Power Series(矩阵快速幂)的更多相关文章
- POJ3233:Matrix Power Series(矩阵快速幂+二分)
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...
- POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 27277 Accepted: ...
- POJ3233:Matrix Power Series(矩阵快速幂+递推式)
传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...
- POJ3233 Matrix Power Series(矩阵快速幂+分治)
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...
- POJ 3233:Matrix Power Series 矩阵快速幂 乘积
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 18450 Accepted: ...
- POJ 3233 Matrix Power Series 矩阵快速幂
设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- POJ3233 Matrix Power Series(快速幂求等比矩阵和)
题面 \(solution:\) 首先,如果题目只要我们求\(A^K\) 那这一题我们可以直接模版矩乘快速幂来做,但是它现在让我们求$\sum_{i=1}^{k}{(A^i)} $ 所以我们思考一下这 ...
- POJ-3233 Matrix Power Series 矩阵A^1+A^2+A^3...求和转化
S(k)=A^1+A^2...+A^k. 保利求解就超时了,我们考虑一下当k为偶数的情况,A^1+A^2+A^3+A^4...+A^k,取其中前一半A^1+A^2...A^k/2,后一半提取公共矩阵A ...
- POJ3233Matrix Power Series(矩阵快速幂)
题意 题目链接 给出$n \times n$的矩阵$A$,求$\sum_{i = 1}^k A^i $,每个元素对$m$取模 Sol 考虑直接分治 当$k$为奇数时 $\sum_{i = 1}^k A ...
随机推荐
- PAT 1053 住房空置率 (20)(代码+思路)
1053 住房空置率 (20)(20 分) 在不打扰居民的前提下,统计住房空置率的一种方法是根据每户用电量的连续变化规律进行判断.判断方法如下: 在观察期内,若存在超过一半的日子用电量低于某给定的阈值 ...
- HDFS高可用性及其分布式系统思想基础
源自单点失效问题,也就是当NameNode不可用的时候,用什么办法可以平滑过渡? 最直接的办法是再添加一个备用的NN,这就产生了Active NameNode和Standby NameNode的设计思 ...
- 1.struts 防止表单重复提交 2. 拦截器
1. 使用struts 防止表单提交 时, form 表单必须使用struts标签库编写,如<s:form/> 等,而不是html标签 2. 拦截器是struts2的核心. interc ...
- 使用delphi 开发多层应用(十九) ios通过soap 访问kbmmw服务器
随着delphi XE4 的推出,开始真正意义上支持ios 的开发,由于目前kbmmw 还不完全支持ios 的开发,因此 无法直接使用kbmmw 的客户端访问kbmmw 的服务器(虽然kbmmw 也提 ...
- 2018.09.29 bzoj3885: Cow Rectangles(悬线法+二分)
传送门 对于第一个问题,直接用悬线法求出最大的子矩阵面积,然后对于每一个能得到最大面积的矩阵,我们用二分法去掉四周的空白部分来更新第二个答案. 代码: #include<bits/stdc++. ...
- 2018.08.20 loj#116. 有源汇有上下界最大流(模板)
传送门 貌似就是转成无源汇,然后两遍最大流搞定? 其实第二遍跑最大流是自动加上了第一次的答案. 代码: #include<bits/stdc++.h> #define N 100005 # ...
- 2018.07.30 bzoj4355: Play with sequence(线段树)
传送门 维护区间覆盖成非负数,区间变成max(xi+a,0)" role="presentation" style="position: relative;&q ...
- phalApi数据库操作
在很多时候,我们会遇到数据库表里面的某个值需要+1操作,我们不能简单地在update的时候写入array('key' => 'key+1'),因为在解析sql的时候,key+1 会带上引号作为一 ...
- 搭建Idea授权服务器用于学习
我自己的搭建服务器http://doit.wenyule.top 懒得看教程或弄不好的小伙伴可以用我搭建的,在激活那选择服务器,输入我上面的地址,注意可以激活2018.2.1之前的.为了防止用的人太多 ...
- php文件上传代码解析
php文件上传代码解析 is_uploaded_file() //函数判断指定的文件是否是通过 HTTP POST 上传的,返回一个布尔值. $_FILES['upfile']['tmp_name' ...