A car travels from a starting position to a destination which is `target` miles east of the starting position.

Along the way, there are gas stations.  Each station[i] represents a gas station that is station[i][0] miles east of the starting position, and has station[i][1] liters of gas.

The car starts with an infinite tank of gas, which initially has startFuel liters of fuel in it.  It uses 1 liter of gas per 1 mile that it drives.

When the car reaches a gas station, it may stop and refuel, transferring all the gas from the station into the car.

What is the least number of refueling stops the car must make in order to reach its destination?  If it cannot reach the destination, return -1.

Note that if the car reaches a gas station with 0 fuel left, the car can still refuel there.  If the car reaches the destination with 0 fuel left, it is still considered to have arrived.

Example 1:

Input: target = 1, startFuel = 1, stations = []
Output: 0
Explanation: We can reach the target without refueling.

Example 2:

Input: target = 100, startFuel = 1, stations = [[10,100]]
Output: -1
Explanation: We can't reach the target (or even the first gas station).

Example 3:

Input: target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]]
Output: 2
Explanation:
We start with 10 liters of fuel.
We drive to position 10, expending 10 liters of fuel. We refuel from 0 liters to 60 liters of gas.
Then, we drive from position 10 to position 60 (expending 50 liters of fuel),
and refuel from 10 liters to 50 liters of gas. We then drive to and reach the target.
We made 2 refueling stops along the way, so we return 2.

Note:

  1. 1 <= target, startFuel, stations[i][1] <= 10^9
  2. 0 <= stations.length <= 500
  3. 0 < stations[0][0] < stations[1][0] < ... < stations[stations.length-1][0] < target

这道题说有一辆小车,需要向东行驶 target 的距离,路上有许多加油站,每个加油站有两个信息,一个是距离起点的距离,另一个是可以加的油量,问我们到达 target 位置最少需要加的油量。我们可以从第三个例子来分析,开始时有 10 升油,可以到达第一个加油站,此时花掉了 10 升,但是可以补充 60 升,当前的油可以到达其他所有的加油站,由于已经开了 10 迈,所以到达后面的加油站的距离分别为 10,20,和 50。若我们到最后一个加油站,那离起始位置就有 60 迈了,再加上此加油站提供的 40 升油,直接就可以到达 100 位置,不用再加油了,所以总共只需要加2次油。由此可以看出来其实我们希望到达尽可能远的加油站的位置,同时最好该加油站中的油也比较多,这样下一次就能到达更远的位置。像这种求极值的问题,十有八九要用动态规划 Dynamic Programming 来做,但是这道题的 dp 定义式并不是直接来定义需要的最少加油站的个数,那样定义的话不太好推导出状态转移方程。正确的定义应该是根据加油次数能到达的最远距离,我们就用一个一维的 dp 数组,其中 dp[i] 表示加了i次油能到达的最远距离,那么最后只要找第一个i值使得 dp[i] 大于等于 target 即可。dp 数组的大小初始化为加油站的个数加1,值均初始化为 startFuel 即可,因为初始的油量能到达的距离是确定的。现在来推导状态转移方程了,遍历每一个加油站,对于每个遍历到的加油站k,需要再次遍历其之前的所有的加油站i,能到达当前加油站k的条件是当前的 dp[i] 值大于等于加油站k距起点的距离,若大于等于的话,我们可以更新 dp[i+1] 为 dp[i]+stations[k][1],这样就可以得到最远能到达的距离。当 dp 数组更新完成后,需要再遍历一遍,找到第一个大于等于 target 的 dp[i] 值,并返回i即可,参见代码如下:


解法一:

class Solution {
public:
int minRefuelStops(int target, int startFuel, vector<vector<int>>& stations) {
int n = stations.size();
vector<long> dp(n + 1, startFuel);
for (int k = 0; k < n; ++k) {
for (int i = k; i >= 0 && dp[i] >= stations[k][0]; --i) {
dp[i + 1] = max(dp[i + 1], dp[i] + stations[k][1]);
}
}
for (int i = 0; i <= n; ++i) {
if (dp[i] >= target) return i;
}
return -1;
}
};

这道题还有一个标签是 Heap,说明还可以用堆来做,这里是用最大堆。因为之前也分析了,我们关心的是在最小的加油次数下能达到的最远距离,那么每个加油站的油量就是关键因素,可以将所有能到达的加油站根据油量的多少放入最大堆,这样每一次都选择油量最多的加油站去加油,才能尽可能的到达最远的地方(如果骄傲没被现实大海冷冷拍下,又怎会懂得要多努力,才走得到远方。。。打住打住,要唱起来了 ^o^)。这里需要一个变量i来记录当前遍历到的加油站的位置,外层循环的终止条件是 startFuel 小于 target,然后在内部也进行循环,若当前加油站的距离小于等于 startFuel,说明可以到达,则把该加油站油量存入最大堆,这个 while 循环的作用就是把所有当前能到达的加油站的油量都加到最大堆中。这样取出的堆顶元素就是最大的油量,也是我们下一步需要去的地方(最想要去的地方,怎么能在半路就返航?!),假如此时堆为空,则直接返回 -1,表示无法到达 target。否则就把堆顶元素加到 startFuel 上,此时的startFuel 就表示当前能到的最远距离,是不是跟上面的 DP 解法核心思想很类似。由于每次只能去一个加油站,此时结果 res 也自增1,当 startFuel 到达 target 时,结果 res 就是最小的加油次数,参见代码如下:


解法二:

class Solution {
public:
int minRefuelStops(int target, int startFuel, vector<vector<int>>& stations) {
int res = 0, i = 0, n = stations.size();
priority_queue<int> pq;
for (; startFuel < target; ++res) {
while (i < n && stations[i][0] <= startFuel) {
pq.push(stations[i++][1]);
}
if (pq.empty()) return -1;
startFuel += pq.top(); pq.pop();
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/871

参考资料:

https://leetcode.com/problems/minimum-number-of-refueling-stops/

https://leetcode.com/problems/minimum-number-of-refueling-stops/discuss/149839/DP-O(N2)-and-Priority-Queue-O(NlogN)

https://leetcode.com/problems/minimum-number-of-refueling-stops/discuss/149858/Simple-Java-Solution-Using-PriorityQueue-O(nlogn)

[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)

[LeetCode] 871. Minimum Number of Refueling Stops 最少的加油站个数的更多相关文章

  1. 【LeetCode】871. Minimum Number of Refueling Stops 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 贪心算法 日期 题目地址:https://leetc ...

  2. 871. Minimum Number of Refueling Stops

    A car travels from a starting position to a destination which is target miles east of the starting p ...

  3. LC 871. Minimum Number of Refueling Stops 【lock, hard】

    A car travels from a starting position to a destination which is target miles east of the starting p ...

  4. [Swift]LeetCode871. 最低加油次数 | Minimum Number of Refueling Stops

    A car travels from a starting position to a destination which is target miles east of the starting p ...

  5. [LeetCode] 452. Minimum Number of Arrows to Burst Balloons 最少箭数爆气球

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  6. [LeetCode] 452 Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  7. LeetCode 1284. Minimum Number of Flips to Convert Binary Matrix to Zero Matrix (最少翻转次数将二进制矩阵全部置为0)

    给一个矩阵mat,每个格子都是0或1,翻转一个格子会将该格子以及相邻的格子(有共同边)全部翻转(0变为1,1变为0) 求问最少需要翻转几次将所有格子全部置为0. 这题的重点是数据范围,比赛结束看了眼数 ...

  8. [LeetCode] Minimum Number of Arrows to Burst Balloons 最少数量的箭引爆气球

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  9. [Leetcode 452] 最少需要射出多少支箭Minimum Number of Arrows to Burst Balloons 贪心 重载

    [题目] There are a number of spherical balloons spread in two-dimensional space. For each balloon, pro ...

随机推荐

  1. 机器学习(九)-------- 聚类(Clustering) K-均值算法 K-Means

    无监督学习 没有标签 聚类(Clustering) 图上的数据看起来可以分成两个分开的点集(称为簇),这就是为聚类算法. 此后我们还将提到其他类型的非监督学习算法,它们可以为我们找到其他类型的结构或者 ...

  2. 自动轮播swiper css实现

    @keyframes scale { 0% { transform: scale(1, 1); opacity: 0.5; z-index:; transition: opacity z-index ...

  3. 《 .NET并发编程实战》实战习题集 - 5 - 并发查找等待算法

    先发表生成URL以印在书里面.等书籍正式出版销售后会公开内容.

  4. 2019-9-18-WPF-如何调试-binding

    原文:2019-9-18-WPF-如何调试-binding title author date CreateTime categories WPF 如何调试 binding lindexi 2019- ...

  5. C# 关于使用JavaScriptSerializer 序列化与返序列化的操作

    //开始解析  //引用 //using System.Web.Script.Serialization; JavaScriptSerializer js = new JavaScriptSerial ...

  6. Visual Studio中的主题定制变得更加容易

    有时Visual Studio的默认主题是不够的.幸运的是,我们刚刚重新设计了创建和导入自定义主题的过程. 导入主题的唯一方法之一是下载旧的Color Theme Editor扩展.如果你足够勇敢地创 ...

  7. Asp.netCore 3.0 Web 实现Oauth2.0微信授权登陆的测试

    1:Oauth2.0授权的流程截图 官方流程如下: 1 第一步:用户同意授权,获取code 2 第二步:通过code换取网页授权access_token 3 第三步:刷新access_token(如果 ...

  8. Python破解js加密实例(有道在线翻译)

    在爬虫爬取网站的时候,经常遇到一些反爬虫技术,比如: 加cookie,身份验证UserAgent 图形验证,还有很难破解的滑动验证 js签名验证,对传输数据进行加密处理 对于js加密经过加密传输的就是 ...

  9. mask-rcnn代码解读(五):mask_iou的计算

    我以为只有box能计算iou值,但我看了maskrcnn后,发现该模型对mask进行了iou的计算,该方法巧妙之处在于 mask1与mask2必须有相同的height and width,而后在同一个 ...

  10. AT+CNUM获取不到手机号

    原因是卡商没有写入SIM卡 解决办法 手动写入 1. 先确认SIM卡的本机号码 2. 选择电话本存储 /* AT+CPBS Select phonebook memory storage " ...