BZOJ 4197: [Noi2015]寿司晚宴 状压dp+质因数分解
挺神的一道题 ~
由于两个人选的数字不能有互质的情况,所以说对于一个质因子来说,如果 1 选了,则 2 不能选任何整除该质因子的数.
然后,我们发现对于 1 ~ 500 的数字来说,只可能有一个大于 $\sqrt 500$ 的质因子(两个的话乘积就超过 500 了)
而不大于 $\sqrt 500$ 的质因子总数只有 8 个,所以可以对这 8 个质因子状压.
我们先假设所有数字都 $\eqslant 30$,即所有质因子都 $leqslant \sqrt 500$.
定义状态 dp[i][j] 表示第一个人选的质因子集合为 $i$,第二个人选的质因子集合为 $j$.
那么直接更新 $dp[i|sta][j]+=dp[i][j]$ (sta 与 k 无交集)
对于第二个维度同理.
由于我们用滚动数组,所以还要定义 f1[i][j], f2[i][j] 表示第一个人/第二个人 和 第二个人/第一个人 状态下的方案数.
这个转移弄完之后,我们再考虑加入大于 $\sqrt 500$ 的质因子的情况:
令这个质因子为 $x$,那么会有一段数字都包含这个 $x$,显然这些数中只能让 1 个人去选择这个质因子.
我们沿用上面那个 f1[i][j], f2[i][j] 来更新,然后对于这一段的开始位置直接令 f1=f2=dp,其余的正常 dp。
处理完这段的时候还要减去两个数都不选的情况.
最后 dp'[i][j]=f1[i][j]+f2[i][j]-dp[i][j].
code:
#include <bits/stdc++.h>
#define N 703
#define LL long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n;
int poww[N];
LL ans,mod;
LL dp[N][N],f1[N][N],f2[N][N];
int p[13]={0,2,3,5,7,11,13,17,19,23};
struct data
{
int num,bi,sta;
}a[N];
bool cmp(data a,data b)
{
return a.bi<b.bi;
}
void init(int num)
{
int i,j,v=num,bi=0;
for(i=1;i<=8;++i)
{
if(v%p[i]==0)
{
a[num].sta|=poww[i];
while(v%p[i]==0) v/=p[i];
}
}
if(v>1) bi=v;
a[num].bi=bi;
a[num].num=num;
}
int main()
{
// setIO("input");
int i,j;
scanf("%d%lld",&n,&mod);
for(i=1;i<=12;++i) poww[i]=(1<<(i-1));
for(i=2;i<=n;++i) init(i);
sort(a+2,a+1+n,cmp);
dp[0][0]=1ll;
for(i=2;i<=n;++i)
{
if(i==2||!a[i].bi||a[i].bi!=a[i-1].bi)
{
memcpy(f1,dp,sizeof(dp));
memcpy(f2,dp,sizeof(dp));
}
for(j=255;j>=0;--j)
{
for(int k=255;k>=0;--k)
{
if((j&a[i].sta)==0) f1[j][k|a[i].sta]=(f1[j][k|a[i].sta]+f1[j][k])%mod;
if((k&a[i].sta)==0) f2[j|a[i].sta][k]=(f2[j|a[i].sta][k]+f2[j][k])%mod;
}
}
if(i==n||!a[i].bi||a[i].bi!=a[i+1].bi)
{
for(j=0;j<=255;++j)
{
for(int k=0;k<=255;++k)
{
dp[j][k]=(f1[j][k]+f2[j][k]-dp[j][k]+mod)%mod;
}
}
}
}
LL ans=0ll;
for(i=0;i<=255;++i) for(j=0;j<=255;++j) if((i&j)==0) (ans+=dp[i][j])%=mod;
printf("%lld\n",ans);
return 0;
}
BZOJ 4197: [Noi2015]寿司晚宴 状压dp+质因数分解的更多相关文章
- [NOI2015]寿司晚宴 --- 状压DP
[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...
- 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...
- B4197 [Noi2015]寿司晚宴 状压dp
这个题一开始想到了唯一分解定理,然后状压.但是显然数组开不下,后来想到每个数(n<500)大于19的素因子只可能有一个,所以直接单独存就行了. 然后正常状压dp就很好搞了. 题干: Descri ...
- bzoj4197 [Noi2015]寿司晚宴——状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4197 首先,两个人选的数都互质可以看作是一个人选了一个数,就相当于选了一个质因数集合,另一个 ...
- [NOI2015][bzoj4197] 寿司晚宴 [状压dp+质因数]
题面 传送门 思路 首先,要让两个人选的数字全部互质,那么有一个显然的充要条件:甲选的数字的质因数集合和乙选的数字的质因数集合没有交集 30pt 这种情况下n<=30,也就是说可用的质数只有10 ...
- [NOI2015]寿司晚宴——状压dp
题目转化:将2~n的数分成两组,可以不选,使得这两组没有公共的质因子.求方案数. 选择了一个数,相当于选择了它的所有质因子. 30分: 发现,n<=30的时候,涉及到的质因子也就10个.2,3, ...
- BZOJ 4197 NOI 2015 寿司晚宴 状压DP
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 694 Solved: 440[Submit][Status] ...
- BZOJ 4197: [Noi2015]寿司晚宴( dp )
N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...
- 【BZOJ-4197】寿司晚宴 状压DP
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 694 Solved: 440[Submit][Status] ...
随机推荐
- nodeJs编写的简单服务器
一.简单的nodeJs写的 http 服务器 1.先Hello world,创建最简单的 Node 服务器(server.js) var http = require("http" ...
- OpenResty部署nginx及nginx+lua
因为用nginx+lua去开发,所以会选择用最流行的开源方案,就是用OpenResty nginx+lua打包在一起,而且提供了包括redis客户端,mysql客户端,http客户端在内的大量的组件 ...
- Github下载慢和下载过程中断等情况的解决方案
Github下载慢和下载过程中断等情况的解决方案 最近老大push项目,正常的git clone每次都是下载一部分就断掉了. 尝试了修改hosts文件的方式,更换了延迟最低的域名也没啥用(难道我姿 ...
- 设计模式-依赖倒置-Dependency Inversion Principle
依赖倒置原则: 一般来说我们认为作为底层基础框架的逻辑是不应该依赖于上层逻辑的, 所以我们设计软件时也经常是: 需求 - 上层逻辑(直接实现需求) - 发现需要固化的逻辑 - 开发底层模块 - 然后上 ...
- 神奇的外部嵌套(使用ROW_NUMBER()查询带条件的时候提示列名无效)
declare @pageIndex int -- 第几页 declare @pageSize int -- 每页包含的记录数 --这里注意一下,不能直接把变量放在这里,要用select select ...
- vue中常见的指令
1,差值表达式{{}} <p >{{ msg }}</p> 2.v-cloak解决差值表达式闪烁的问题 <p v-cloak>{{ msg }}</p> ...
- java HttpClient操作工具类
maven: <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId> ...
- MySQL Percona Toolkit--pt-osc执行SQL命令
pt-osc执行日志 在对数据量为100000的表tb004做DROP COLUMN操作,pt-osc工具日志为: Operation, tries, wait: analyze_table, , c ...
- 【转】SetWindowText 的用法
SetWindowTextW表示设置的字符串是WCHAR (双字节字符 )SetWindowTextA表示设置的字符串是CHAR (单字节字符 )SetWindowText表示设置的字符串是自动匹配当 ...
- Windows Cmd 命令管理服务
今天在Windows 干净环境上安装软件过程中,安装完成后,发现部署在IIS 上的网站无法使用,提示 "您提交的参数有误!,请重新提交" 纯净的windows 7 x64位环境, ...