前言

  • \(SPFA\)算法由于它上限 \(O(NM) = O(VE)\)的时间复杂度,被卡掉的几率很大.在算法竞赛中,我们需要一个更稳定的算法:\(dijkstra\).

什么是\(dijkstra\)?

  • \(dijkstra\)是一种单源最短路径算法,时间复杂度上限为\(O(n^2)\)(朴素),在实际应用中较为稳定\(;\)加上堆优化之后更是具有\(O((n+m)\log_{2}n)\)的时间复杂度,在稠密图中有不俗的表现.

\(dijkstra\)的原理/流程?

  • \(dijkstra\)本质上的思想是贪心,它只适用于不含负权边的图.
  • 我们把点分成两类,一类是已经确定最短路径的点,称为"白点",另一类是未确定最短路径的点,称为"蓝点"
  • \(dijkstra\)的流程如下\(:\)
  • \(1.\) 初始化\(dis[start] = 0,\)其余节点的\(dis\)值为无穷大.
  • \(2.\) 找一个\(dis\)值最小的蓝点\(x,\)把节点\(x\)变成白点.
  • \(3.\) 遍历\(x\)的所有出边\((x,y,z),\)若\(dis[y] > dis[x] + z,\)则令\(dis[y] = dis[x] + z\)
  • \(4.\) 重复\(2,3\)两步,直到所有点都成为白点\(.\)
  • 时间复杂度为\(O(n^2)\)

\(dijkstra\)为什么是正确的

  • 当所有边长都是非负数的时候,全局最小值不可能再被其他节点更新.所以在第\(2\)步中找出的蓝点\(x\)必然满足\(:dis[x]\)已经是起点到\(x\)的最短路径\(.\)我们不断选择全局最小值进行标记和拓展,最终可以得到起点到每个节点的最短路径的长度

图解

  • (令\(start = 1\))
  • 开始时我们把\(dis[start]\)初始化为\(0\),其余点初始化为\(inf\)

  • 第一轮循环找到\(dis\)值最小的点\(1\),将\(1\)变成白点,对所有与\(1\)相连的蓝点的\(dis\)值进行修改,使得\(dis[2]=2,dis[3]=4,dis[4]=7\)

  • 第二轮循环找到\(dis\)值最小的点\(2\),将\(2\)变成白点,对所有与\(2\)相连的蓝点的\(dis\)值进行修改,使得\(dis[3]=3,dis[5]=4\)

  • 第三轮循环找到\(dis\)值最小的点\(3\),将\(3\)变成白点,对所有与\(2\)相连的蓝点的\(dis\)值进行修改,使得\(dis[4]=4\)

  • 接下来两轮循环分别将\(4,5\)设为白点,算法结束,求出所有点的最短路径
  • 时间复杂度\(O(n^2)\)

为什么\(dijkstra\)不能处理有负权边的情况?

  • 我们来看下面这张图

  • \(2\)到\(3\)的边权为\(-4\),显然从\(1\)到\(3\)的最短路径为\(-2\) \((1->2->3).\)但在循环开始时程序会找到当前\(dis\)值最小的点\(3\),并标记它为白点.
  • 这时的\(dis[3]=1,\)然而\(1\)并不是起点到\(3\)的最短路径.因为\(3\)已经被标为白点,所以\(dis[3]\)不会再被修改了.我们在边权存在负数的情况下得到了错误的答案.

\(dijkstra\)的堆优化?

  • 观察\(dijkstra\)的流程,发现步骤\(2\)可以优化

  • 怎么优化呢?

  • 我会zkw线段树!我会斐波那契堆!

  • 我会堆!

  • 我们可以用堆对\(dis\)数组进行维护,用\(O(\log_{2}n)\)的时间取出堆顶元素并删除,用\(O(\log_{2}n)\)遍历每条边,总复杂度\(O((n+m)\log_{2}n)\)

  • 范例代码:

#include<bits/stdc++.h>

const int MaxN = 100010, MaxM = 500010;

struct edge
{
int to, dis, next;
}; edge e[MaxM];
int head[MaxN], dis[MaxN], cnt;
bool vis[MaxN];
int n, m, s; inline void add_edge( int u, int v, int d )
{
cnt++;
e[cnt].dis = d;
e[cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt;
} struct node
{
int dis;
int pos;
bool operator <( const node &x )const
{
return x.dis < dis;
}
}; std::priority_queue<node> q; inline void dijkstra()
{
dis[s] = 0;
q.push( ( node ){0, s} );
while( !q.empty() )
{
node tmp = q.top();
q.pop();
int x = tmp.pos, d = tmp.dis;
if( vis[x] )
continue;
vis[x] = 1;
for( int i = head[x]; i; i = e[i].next )
{
int y = e[i].to;
if( dis[y] > dis[x] + e[i].dis )
{
dis[y] = dis[x] + e[i].dis;
if( !vis[y] )
{
q.push( ( node ){dis[y], y} );
}
}
}
}
} int main()
{
scanf( "%d%d%d", &n, &m, &s );
for(int i = 1; i <= n; ++i)dis[i] = 0x7fffffff;
for( register int i = 0; i < m; ++i )
{
register int u, v, d;
scanf( "%d%d%d", &u, &v, &d );
add_edge( u, v, d );
}
dijkstra();
for( int i = 1; i <= n; i++ )
printf( "%d ", dis[i] );
return 0;
}

例题

  • 入门模板:P3371
  • 进阶模板:P4779
  • 其余例题请右转洛谷题库,搜索"最短路"

后记

  • 本文部分内容摘自李煜东《算法竞赛进阶指南》和《信息学竞赛一本通》
  • 友情提示:正权图请使用\(dijkstra\)算法,负权图请使用\(SPFA\)算法

A simple dispiction of dijkstra的更多相关文章

  1. tricks - 思维

    编辑 目录 tricks 系列 随机的性质 bitmask 建图 最基本的 黑白染色 Kruskal重构树 并查集维护值域 带根号的数三元环 根号分治 调和级数哈希 多属性哈希 时光倒流 时光反复横跳 ...

  2. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  3. POJ 1135 Domino Effect (Dijkstra 最短路)

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9335   Accepted: 2325 Des ...

  4. 一个对 Dijkstra 的采访视频

    之前在微博上推荐了一个对 Dijkstra 的采访视频,看了两遍之后觉得实在很好,所以再正式推荐一下.大部分人可能都知道他对图论算法和操作系统的贡献,而其实 Dijkstra 在程序语言上的造诣也很深 ...

  5. 【转】一个对 Dijkstra 的采访视频

    一个对 Dijkstra 的采访视频 (也可以访问 YouTube 或者从源地址下载 MPEG1,300M) 之前在微博上推荐了一个对 Dijkstra 的采访视频,看了两遍之后觉得实在很好,所以再正 ...

  6. 数据结构与算法-图的最短路径Dijkstra

    一  无向图单源最短路径,Dijkstra算法 计算源点a到图中其他节点的最短距离,是一种贪心算法.利用局部最优,求解全局最优解. 设立一个visited访问和dist距离数组,在初始化后每一次收集一 ...

  7. BNU 4356 ——A Simple But Difficult Problem——————【快速幂、模运算】

    A Simple But Difficult Problem Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer IO format: %l ...

  8. BNU 28887——A Simple Tree Problem——————【将多子树转化成线段树+区间更新】

    A Simple Tree Problem Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on ZJU. O ...

  9. HDU 6166.Senior Pan()-最短路(Dijkstra添加超源点、超汇点)+二进制划分集合 (2017 Multi-University Training Contest - Team 9 1006)

    学长好久之前讲的,本来好久好久之前就要写题解的,一直都没写,懒死_(:з」∠)_ Senior Pan Time Limit: 12000/6000 MS (Java/Others)    Memor ...

随机推荐

  1. ZooKeeper学习笔记(二)——内部原理

    zookeeper学习笔记(二)--内部原理 1. zookeeper的节点的类型 总的来说可以分为持久型和短暂型,主要区别如下: 持久:客户端与服务器端断开连接的以后,创建的节点不会被删除: 持久化 ...

  2. Udp客户端与服务通讯

    使用UDP与服务端通讯时候,同样需要先启用udp服务端监控,当服务端启动成功,在启动客户端 首先UDP服务端类,代码如下: public class UdpServerTest { public vo ...

  3. 使用密码远程QQ时窗口闪退

    系统时间不一致,在QQ上使用密码远程时会闪退,把系统时间调到大概一致就行了.

  4. 2019 昆仑万维java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.昆仑万维等公司offer,岗位是Java后端开发,因为发展原因最终选择去了昆仑万维,入职一年时间了,也成为了面 ...

  5. 最全的 pip 使用指南,50% 你可能没用过

    所有的 Python 开发者都清楚,Python 之所以如此受欢迎,能够在众多高级语言中,脱颖而出,除了语法简单,上手容易之外,更多还要归功于 Python 生态的完备,有数以万计的 Python 爱 ...

  6. 又一个js乱码的秘密alert放在js文件里中文乱码,可是放在HTML里显示中文就很好

    用文本文档打开你的js文件,文件-另存为,编码更改为UTF-8保存. 回复 | PFly | 园豆:94 (初学一级) | 2017-07-17 21:32 显示结果中文乱码 支持(0)反对(0)回复 ...

  7. 手写MQ框架(二)-服务端实现

    一.起航 书接上文->手写MQ框架(一)-准备启程 本着从无到有,从有到优的原则,所以计划先通过web实现功能,然后再优化改写为socket的形式. 1.关于技术选型 web框架使用了之前写的g ...

  8. 雪妖现世:给SAP Fiori Launchpad增添雪花纷飞的效果

    1995年7月,台湾大宇公司发布了一款国产单机角色扮演游戏神作:<仙剑奇侠传1>,所谓"一包烟,一杯茶",就能在电脑面前坐一整天. 这么经典的游戏Jerry当然已经通关 ...

  9. EF 拉姆达 linq if else (整理)

    首先想到: var data0 = db.T_Plants2; //这里加.AsQueryable() ) { .Where(d => d.NaturalEcosystem == true); ...

  10. day 07 预科

    目录 异常处理 字符串内置方法 1.索引取值 2.切片 3.成员运算 4.for循环 5.len() 6.strip(): 默认去掉两端空格 7.lsteip()/rstrip(): 去左端/右端 空 ...