特征缩放(Feature Scaling)
特征缩放的几种方法:
(1)最大最小值归一化(min-max normalization):将数值范围缩放到 [0, 1] 区间里

(2)均值归一化(mean normalization):将数值范围缩放到 [-1, 1] 区间里,且数据的均值变为0

(3)标准化 / z值归一化(standardization / z-score normalization):将数值缩放到0附近,且数据的分布变为均值为0,标准差为1的标准正态分布(先减去均值来对特征进行 中心化 mean centering 处理,再除以标准差进行缩放)

(4)最大绝对值归一化(max abs normalization ):也就是将数值变为单位长度(scaling to unit length),将数值范围缩放到 [-1, 1] 区间里

(5)稳键归一化(robust normalization):先减去中位数,再除以四分位间距(interquartile range),因为不涉及极值,因此在数据里有异常值的情况下表现比较稳健

* 有一些时候,只对数据进行中心化和缩放是不够的,还需对数据进行白化(whitening)处理来消除特征间的线性相关性。
归一化和标准化的区别:
归一化(normalization):归一化是将样本的特征值转换到同一量纲下,把数据映射到[0,1]或者[-1, 1]区间内。
标准化(standardization):标准化是将样本的特征值转换为标准值(z值),每个样本点都对标准化产生影响。
为什么要进行特征缩放?
1. 统一特征的权重&提升模型准确性
如果某个特征的取值范围比其他特征大很多,那么数值计算(比如说计算欧式距离)就受该特征的主要支配。但实际上并不一定是这个特征最重要,通常需要把每个特征看成同等重要。归一化/标准化数据可以使不同维度的特征放在一起进行比较,可以大大提高模型的准确性。
2. 提升梯度下降法的收敛速度
在使用梯度下降法求解最优化问题时, 归一化/标准化数据后可以加快梯度下降的求解速度。
具体使用哪种方法进行特征缩放?
在需要使用距离来度量相似性的算法中,或者使用PCA技术进行降维的时候,通常使用标准化(standardization)或均值归一化(mean normalization)比较好,但如果数据分布不是正态分布或者标准差非常小,以及需要把数据固定在 [0, 1] 范围内,那么使用最大最小值归一化(min-max normalization)比较好(min-max 常用于归一化图像的灰度值)。但是min-max比较容易受异常值的影响,如果数据集包含较多的异常值,可以考虑使用稳键归一化(robust normalization)。对于已经中心化的数据或稀疏数据的缩放,比较推荐使用最大绝对值归一化(max abs normalization ),因为它会保住数据中的0元素,不会破坏数据的稀疏性(sparsity)。
哪些机器学习模型必须进行特征缩放?
通过梯度下降法求解的模型需要进行特征缩放,这包括线性回归(Linear Regression)、逻辑回归(Logistic Regression)、感知机(Perceptron)、支持向量机(SVM)、神经网络(Neural Network)等模型。此外,近邻法(KNN),K均值聚类(K-Means)等需要根据数据间的距离来划分数据的算法也需要进行特征缩放。主成分分析(PCA),线性判别分析(LDA)等需要计算特征的方差的算法也会受到特征缩放的影响。
决策树(Decision Tree),随机森林(Random Forest)等基于树的模型不需要进行特征缩放,因为特征缩放不会改变样本在特征上的信息增益。
进行特征缩放的注意事项:
参考:http://sklearn.lzjqsdd.com/modules/preprocessing.html
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler
特征缩放(Feature Scaling)的更多相关文章
- (一)线性回归与特征归一化(feature scaling)
线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题 ...
- CS229 1 .线性回归与特征归一化(feature scaling)
线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题 ...
- 斯坦福大学公开课机器学习:梯度下降运算的特征缩放(gradient descent in practice 1:feature scaling)
以房屋价格为例,假设有两个特征向量:X1:房子大小(1-2000 feets), X2:卧室数量(1-5) 关于这两个特征向量的代价函数如下图所示: 从上图可以看出,代价函数是一个又瘦又高的椭圆形轮廓 ...
- 机器学习中的特征缩放(feature scaling)
参考:https://blog.csdn.net/iterate7/article/details/78881562 在运用一些机器学习算法的时候不可避免地要对数据进行特征缩放(feature sca ...
- 131.006 Unsupervised Learning - Feature Scaling | 非监督学习 - 特征缩放
@(131 - Machine Learning | 机器学习) 1 Feature Scaling transforms features to have range [0,1] according ...
- Machine Learning--week2 多元线性回归、梯度下降改进、特征缩放、均值归一化、多项式回归、正规方程与设计矩阵
对于multiple features 的问题(设有n个feature),hypothesis 应该改写成 \[ \mathit{h} _{\theta}(x) = \theta_{0} + \the ...
- Feature Scaling
定义:Feature scaling is a method used to standardize the range of independent variables or features of ...
- 浅谈Feature Scaling
浅谈Feature Scaling 定义:Feature scaling is a method used to standardize the range of independent variab ...
- Feature Scaling深入理解
Feature Scaling 可以翻译为特征归一化,或者数据归一化,比如统计学习中,我们一般都会对不同量纲的特征做归一化,深度学习中经常会谈到增加的BN层,LRN层会带来训练收敛速度的提升,等等.问 ...
随机推荐
- vim安装 YCM 过程记录
YCM(YouComplateMe) 属于Vim中大神级的插件,提供了类似于巨硬爸爸的VS中的代码补全,但是其安装方式也是比较复杂,因此特意写下一篇记录,记录下我自己如何安装这一插件的过程: 检查自己 ...
- C#获取文件夹下的所有文件的方法
目录 #基础知识 #只获取目录下一级的文件夹与文件 # 递归地输出当前运行程序所在的磁盘下的所有文件名和子目录名 正文 #基础知识 1.获得当前运行程序的路径 1 string rootPath ...
- C# vb .net图像合成-合成星形
在.net中,如何简单快捷地实现图像合成呢,比如合成文字,合成艺术字,多张图片叠加合成等等?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码 ...
- python3中try异常调试 raise 异常抛出
一.什么是异常? 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行. 一般情况下,在Python无法正常处理程序时就会发生一个异常. 异常是Python对象,表示一个错误. 当Py ...
- Joomla漏洞复现
漏洞环境及利用 Joomla 3.4.6 : https://downloads.joomla.org/it/cms/joomla3/3-4-6 PHP 版本: 5.5.38 Joomla 3.4 之 ...
- Kali软件库认识
对kali上的软件进行一个初步的认识 信息收集 dmitry -o 将输出保存到%host.txt或由-o文件指定的文件 -i 对主机的IP地址执行whois查找 -w 对主机的域名执行whois查找 ...
- RTSP协议介绍 (转)
1. 实 时流协议RTSP RTSP[3]协 议以客户服务器方式工作,它是一个多媒体播放控制协议,用来使用户在播放从因特网下载的实时数据时能够进行控制,如:暂停/继 续.后退.前进等.因此 RTSP ...
- C# winform 托盘控件的使用
从工具栏里,把NotifyIcon控件拖到窗体上,并设置属性: 1.visible 设置默认为FALSE: 2.Image 选一张图片为托盘时显示的图样:比如选奥巴马卡通画像: 3.Text 显示: ...
- MySQL修炼之路五
1. 存储引擎和锁 1. 存储引擎(处理表的处理器) 1. 基本操作 1. 查看所有存储引擎 mysql>show engines; 2. 查看已有表的存储引擎 mysql>show cr ...
- H3C Short GI