Gym101002E:K-Inversions
\(Gym101002E:K-Inversions\)
题意描述:
题目连接链接
给定一个长度为\(N\)只包含\(AB\)的字符串,某个\(A\)的位置为\(j\),某个\(B\)的位置为\(i\),求\(j-k=k\)的数对有多少个,输出\(k=1,2,...,n-1\)的情况。
数据范围:
- \(1\leq n\leq 10^6\)。
思路:
- \(FFT\)。
- 假设\(A\)的位置为\(x\),\(B\)的位置为\(y\),则题目需要\(x-y=k\)。
- 如果说我们将\(A,B\)的位置看作是多项式的幂,就可以在\(nlogn\)的时间内求出所有幂为\(x+y\)的系数。
- 所以这里需要转换一下,令\(y=(n-y-1)\),那么\(x-y=x-n+y+1=k\),即\(x+y=n+k-1\)。
- 所以将\(B\)的位置反转,套用\(fft\)求解。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 6e6 + 10;
const double PI = acos(-1.0);
char s[maxn];
int limit, l, r[maxn];
struct Complex
{
double x, y;
Complex(double xx = 0, double yy = 0){
x = xx, y = yy;
}
Complex operator + (const Complex b) const{
return Complex(x+b.x, y+b.y);
}
Complex operator - (const Complex b) const{
return Complex(x-b.x, y-b.y);
}
Complex operator * (const Complex b) const{
return Complex(x*b.x-y*b.y, x*b.y+y*b.x);
}
}a[maxn], b[maxn];
void fft(Complex c[], int type)
{
for(int i = 0; i < limit; i++)
if(i < r[i]) swap(c[i], c[r[i]]);
for(int mid = 1; mid < limit; mid <<= 1)
{
Complex wn(cos(PI/mid), type*sin(PI/mid));
for(int R = mid<<1, j = 0; j < limit; j+= R)
{
Complex w(1, 0);
for(int k = 0; k < mid; k++, w = w*wn)
{
Complex x = c[j+k], y = w*c[j+mid+k];
c[j+k] = x+y;
c[j+mid+k] = x - y;
}
}
}
}
int main()
{
scanf("%s", s);
int n = strlen(s);
for(int i = 0; i < n; i++)
{
if(s[i] == 'A') a[i].x = 1;
else b[n-i-1].x = 1;
} limit = 1;
while(limit <= n+n) limit <<= 1, l++;
for(int i = 0; i < limit; i++)
r[i] = (r[i>>1]>>1)|((i&1)<<(l-1));
fft(a, 1), fft(b, 1);
for(int i = 0; i <= limit; i++)
a[i] = a[i]*b[i];
fft(a, -1);
for(int i = n; i < n+n-1; i++)
printf("%d\n", (int)(a[i].x/limit+0.5));
return 0;
}
Gym101002E:K-Inversions的更多相关文章
- django模型操作
Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表
- Inversions After Shuffle
Inversions After Shuffle time limit per test 1 second memory limit per test 256 megabytes input stan ...
- 《算法导论》Problem 2-4 Inversions
在Merge Sort的基础上改改就好了. public class Inversions { public static int inversions(int [] A,int p, int r) ...
- [Swift]LeetCode775. 全局倒置与局部倒置 | Global and Local Inversions
We have some permutation Aof [0, 1, ..., N - 1], where N is the length of A. The number of (global) ...
- HDU 6318 - Swaps and Inversions - [离散化+树状数组求逆序数][杭电2018多校赛2]
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=6318 Problem Description Long long ago, there was an ...
- HDU 6318 Swaps and Inversions 思路很巧妙!!!(转换为树状数组或者归并求解逆序数)
Swaps and Inversions Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- PAT 1009. Triple Inversions (35) 数状数组
Given a list of N integers A1, A2, A3,...AN, there's a famous problem to count the number of inversi ...
- HDU 多校对抗赛第二场 1010 Swaps and Inversions
Swaps and Inversions Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- Codeforces 513G1 513G2 Inversions problem [概率dp]
转自九野:http://blog.csdn.net/qq574857122/article/details/43643135 题目链接:点击打开链接 题意: 给定n ,k 下面n个数表示有一个n的排列 ...
- Coursera Algorithms week3 归并排序 练习测验: Counting inversions
题目原文: An inversion in an array a[] is a pair of entries a[i] and a[j] such that i<j but a[i]>a ...
随机推荐
- CentOS6.9安装SonarQube7.6
1 安装前准备 Java (Oracle JRE 8 or OpenJDK 8) MySQL5.6 or MySQL5.7,具体可参考Centos6.9安装MySQL5.6 SonarQube7.6, ...
- Linux 网络通信 API详解【转载】
TCP/IP分层模型 OSI协议参考模型,它是基于国际标准化组织(ISO)的建议发展起来的, 它分为7个层次:应用层.表示层.会话层.传输层.网络层.数据链路层及物理层. 这个7层的协议模型虽然规定得 ...
- Zookeeper 到底能帮我们解决哪些问题?
Zookeeper 从设计模式角度来看,是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper 就将负责通 ...
- Focal Loss 理解
本质上讲,Focal Loss 就是一个解决分类问题中类别不平衡.分类难度差异的一个 loss,总之这个工作一片好评就是了. 看到这个 loss,开始感觉很神奇,感觉大有用途.因为在 NLP 中,也存 ...
- sql server中的临时表、表变量和公用表表达式
在编写T-SQL语句的时候,SQL Server提供了三种方法临时存储某些结果集,分别是临时表.表变量和公用表表达式. 临时表 临时表需要在临时数据库TempDB中通过I/O操作来创建表结构,一旦用户 ...
- 使用Redis作为Spring Security OAuth2的token存储
写在前边 本文对Spring Security OAuth2的token使用Redis保存,相比JWT实现的token存储,Redis可以随时吊销access_token,并且Redis响应速度很快, ...
- Docker(一) - CentOS7中安装Docker - (视频教程)
Docker的使用越来越多,安装也相对简单.本文使用视频的方式展示在CentOS7系统中安装Docker,本文更适合于准备入门学习Docker的童靴. 以下视频,请带上耳机开始聆听 (双击全屏播放) ...
- PHP 简单面向对象 验证码类(静态实例对象调用)
没事写了一个简单的面向对象验证码类,可以直接使用(替换一下字体路径) <?php class authCode { private static $instance = null; #实例对象 ...
- vue打包后刷新页面报错:Unexpected token <
前言 今天遇到了一个很怪的问题,在vue-cli+webpack的项目中,刷新特定页面后页面会变空白,报错为index.html文件中Unexpected token <. 怪点一是开发环境没有 ...
- flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )
1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...