ubuntu之路——day17.4 卷积神经网络示例
以上是一个识别手写数字的示例
在这个示例中使用了两个卷积-池化层,三个全连接层和最后的softmax输出层
一般而言,CNN的构成就是由数个卷积层紧跟池化层再加上数个全连接层和输出层来构建网络。
在上述网络中可以看到一个有关参数的现象如下图:
随着卷积网络层数的增加,可以看到有关图片数据的height和weight都在减小,而信道channel在增加。
伴随着这种操作,激活层的大小也在减小。但是卷积层需要的参数量在增多(f x f + 1) x c,f为filter的大小,c为channel的数量
在全连接层中,需要的参数量为上一层的特征数量x这一层的单元数量。
ubuntu之路——day17.4 卷积神经网络示例的更多相关文章
- ubuntu之路——day17.1 卷积操作的意义、边缘检测的示例、filter与padding的关系、卷积步长
感谢吴恩达老师的公开课,以下图片均来自于吴恩达老师的公开课课件 为什么要进行卷积操作? 我们通过前几天的实验已经做了64*64大小的猫图片的识别. 在普通的神经网络上我们在输入层上输入的数据X的维数为 ...
- [DeeplearningAI笔记]卷积神经网络1.9-1.11池化层/卷积神经网络示例/优点
4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9池化层 优点 池化层可以缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性. 池化层操作 池化操作与卷积操作类似 ...
- ubuntu之路——day17.3 简单的CNN和CNN的常用结构池化层
来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter ...
- ubuntu之路——day17.2 RGB图像的卷积、多个filter的输出、单个卷积层的标记方法
和单层图像的卷积类似,只需要对每一个filter构成的三层立方体上的每一个数字与原图像对应位置的数字相乘相加求和即可. 在这个时候可以分别设置filter的R.G.B三层,可以同时检测纵向或横向边缘, ...
- ubuntu之路——day17.1 用np.pad做padding
网上对np.pad的解释很玄乎,举的例子也不够直观,看了更晕了,对于CNN的填充请参考下面就够用了: np.pad的参数依次是目标数组,多增加的维数可以理解为一张图的前后左右增加几圈,设置为'cons ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week1 卷积神经网络基础知识介绍
一.计算机视觉 如图示,之前课程中介绍的都是64* 64 3的图像,而一旦图像质量增加,例如变成1000 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实.所以需要引入其他的方法来 ...
- 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(一)
Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十分方便,便于指出过滤器的位置. ...
- CNN卷积神经网络入门整合(科普向)
这是一篇关于CNN入门知识的博客,基本手法是抄.删.改.查,就算是自己的一个笔记吧,以后忘了多看看. 1.边界检测示例假如你有一张如下的图像,你想让计算机搞清楚图像上有什么物体,你可以做的事情是检 ...
- Coursera Deep Learning笔记 卷积神经网络基础
参考1 参考2 1. 计算机视觉 使用传统神经网络处理机器视觉的一个主要问题是输入层维度很大.例如一张64x64x3的图片,神经网络输入层的维度为12288. 如果图片尺寸较大,例如一张1000x10 ...
随机推荐
- 【转载】C#的DataTable使用NewRow方法创建新表格行
在C#的DataTable数据表格操作过程中,DataRow类表示DataTable中的数据行信息,但DataRow没有可以直接实例化的构造方法,在创建DataTable的新行的时候,不可直接使用Da ...
- 剑指前端(前端入门笔记系列)——Math对象
Math对象 ECMAScript将一些常用的数学公式和信息封装到了一个对象中——Math对象,为我们实现数学方面的计算功能提供了便捷,而且该对象还提供了辅助完成这些计算的属性和方法 属性 con ...
- vue动态子组件的实现方式
让多个组件使用同一个挂载点,并动态切换,这就是动态组件. 通过使用保留的 <component>元素,动态地绑定到它的 is 特性,可以实现动态组件. 方式一:局部注册所需组件 <d ...
- Web前端2019面试总结3(东软集团面试题)
严禁转载,严禁分享,只供私自鉴赏,请君悉知! 一:基础题 1.什么是margin塌陷?请写出至少三种解决margin塌陷的方法. 答:当两个盒子在垂直方向上设置margin值时,会出现一个有趣的塌陷现 ...
- mybatis update 返回值
mybatis sql: <update id="test" parameterType="map"> update test_0731 set n ...
- ML-软间隔(slack)的 SVM
Why Slack? 为了处理异常值(outlier). 前面推导的svm形式, 是要求严格地全部分对, 基于该情况下, 在margin 的边界线 线上的点, 只能是支持向量. \(min_w \ \ ...
- The server time zone value '�й���ʱ��' is unrecognized or represents more than one time zone 。
The server time zone value '�й���ʱ��' is unrecognized or represents more than one time zone. 今天有Mys ...
- python的异常种类
AttributeError 访问一个对象没有的属性 比如:foo.x 但是foo没有x属性 IOError 输入/输出异常 基本是无法打开文件 ImportError 无法映入模块或包 路径或者名称 ...
- Odoo启动运行参数(script运行参数,不是运行配置文件)
转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10826315.html 一:启动选项用在哪里 如果你是用Pycharm进行odoo二次开发的话,可以通过 R ...
- Haproxy 让后端RS记录真实IP
一.修改haproxy.cfg配置文件,在defaults中加入如下两行,并重启haproxy. vim /etc/haproxy/haproxy.cfg defaults option http-s ...