Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。
Pandas提供了一个单独的merge()函数,作为DataFrame对象之间所有标准数据库连接操作的入口 -


pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True)
  • left - 一个DataFrame对象。
  • right - 另一个DataFrame对象。
  • on - 列(名称)连接,必须在左和右DataFrame对象中存在(找到)。
  • left_on - 左侧DataFrame中的列用作键,可以是列名或长度等于DataFrame长度的数组。
  • right_on - 来自右的DataFrame的列作为键,可以是列名或长度等于DataFrame长度的数组。
  • left_index - 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。 在具有MultiIndex(分层)的DataFrame的情况下,级别的数量必须与来自右DataFrame的连接键的数量相匹配。
  • right_index - 与右DataFrame的left_index具有相同的用法。
  • how - 它是left, right, outer以及inner之中的一个,默认为内inner。 下面将介绍每种方法的用法。
  • sort - 按照字典顺序通过连接键对结果DataFrame进行排序。默认为True,设置为False时,在很多情况下大大提高性能。

现在创建两个不同的DataFrame并对其执行合并操作。

import pandas as pd
left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print (left)
print("========================================")
print (right)

输出结果:

     Name  id subject_id
0 Alex 1 sub1
1 Amy 2 sub2
2 Allen 3 sub4
3 Alice 4 sub6
4 Ayoung 5 sub5
========================================
Name id subject_id
0 Billy 1 sub2
1 Brian 2 sub4
2 Bran 3 sub3
3 Bryce 4 sub6
4 Betty 5 sub5
 

在一个键上合并两个数据帧

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left,right,on='id')
print(rs)

输出结果:

   Name_x  id subject_id_x Name_y subject_id_y
0 Alex 1 sub1 Billy sub2
1 Amy 2 sub2 Brian sub4
2 Allen 3 sub4 Bran sub3
3 Alice 4 sub6 Bryce sub6
4 Ayoung 5 sub5 Betty sub5
 

合并多个键上的两个数据框

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left,right,on=['id','subject_id'])
print(rs)

输出结果:

   Name_x  id subject_id Name_y
0 Alice 4 sub6 Bryce
1 Ayoung 5 sub5 Betty
 

合并使用“how”的参数

如何合并参数指定如何确定哪些键将被包含在结果表中。如果组合键没有出现在左侧或右侧表中,则连接表中的值将为NA

这里是how选项和SQL等效名称的总结 -

合并方法 SQL等效 描述
left LEFT OUTER JOIN 使用左侧对象的键
right RIGHT OUTER JOIN 使用右侧对象的键
outer FULL OUTER JOIN 使用键的联合
inner INNER JOIN 使用键的交集

Left Join示例

import pandas as pd
left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, on='subject_id', how='left')
print (rs)

输出结果:

   Name_x  id_x subject_id Name_y  id_y
0 Alex 1 sub1 NaN NaN
1 Amy 2 sub2 Billy 1.0
2 Allen 3 sub4 Brian 2.0
3 Alice 4 sub6 Bryce 4.0
4 Ayoung 5 sub5 Betty 5.0
 

Right Join示例

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, on='subject_id', how='right')
print (rs)

输出结果:

   Name_x  id_x subject_id Name_y  id_y
0 Amy 2.0 sub2 Billy 1
1 Allen 3.0 sub4 Brian 2
2 Alice 4.0 sub6 Bryce 4
3 Ayoung 5.0 sub5 Betty 5
4 NaN NaN sub3 Bran 3
 

Outer Join示例

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, how='outer', on='subject_id')
print (rs)

输出结果:

   Name_x  id_x subject_id Name_y  id_y
0 Alex 1.0 sub1 NaN NaN
1 Amy 2.0 sub2 Billy 1.0
2 Allen 3.0 sub4 Brian 2.0
3 Alice 4.0 sub6 Bryce 4.0
4 Ayoung 5.0 sub5 Betty 5.0
5 NaN NaN sub3 Bran 3.0
 

Inner Join示例

连接将在索引上进行。连接(Join)操作将授予它所调用的对象。所以,a.join(b)不等于b.join(a)

import pandas as pd

left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, on='subject_id', how='inner')
print (rs)

输出结果:

   Name_x  id_x subject_id Name_y  id_y
0 Amy 2 sub2 Billy 1
1 Allen 3 sub4 Brian 2
2 Alice 4 sub6 Bryce 4
3 Ayoung 5 sub5 Betty 5

Pandas | 19 合并/连接的更多相关文章

  1. oracle表连接------>排序合并连接(Merge Sort Join)

    排序合并连接 (Sort Merge Join)是一种两个表在做连接时用排序操作(Sort)和合并操作(Merge)来得到连接结果集的连接方法. 对于排序合并连接的优缺点及适用场景例如以下: a,通常 ...

  2. SQL连接操作符介绍(循环嵌套, 哈希匹配和合并连接)

    今天我将介绍在SQLServer 中的三种连接操作符类型,分别是:循环嵌套.哈希匹配和合并连接.主要对这三种连接的不同.复杂度用范例的形式一一介绍. 本文中使用了示例数据库AdventureWorks ...

  3. 排序合并连接(sort merge join)的原理

    排序合并连接(sort merge join)的原理 排序合并连接(sort merge join)的原理     排序合并连接(sort merge join)       访问次数:两张表都只会访 ...

  4. pandas列合并为一行

    将dataframe利用pandas列合并为一行,类似于sql的GROUP_CONCAT函数.例如如下dataframe id_part pred pred_class v_id 0 d 0 0.12 ...

  5. oracle 表连接 - sort merge joins 排序合并连接

    https://blog.csdn.net/dataminer_2007/article/details/41907581一. sort merge joins连接(排序合并连接) 原理 指的是两个表 ...

  6. arcgis中的Join(合并连接)和Relate(关联连接)

    arcgis中的Join(合并连接)和Relate(关联连接) 一.区别 1.连接关系不一样. Relate(关联连接)方式连接的两个表之间的记录可以是“一对一”.“多对一”.“一对多”的关系 Joi ...

  7. 04. Pandas 3| 数值计算与统计、合并连接去重分组透视表文件读取

    1.数值计算和统计基础 常用数学.统计方法 数值计算和统计基础 基本参数:axis.skipna df.mean(axis=1,skipna=False)  -->> axis=1是按行来 ...

  8. pandas合并/连接

    Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似.Pandas提供了一个单独的merge()函数,作为DataFrame对象之间所有标准数据库连接操作的入口 - pd.me ...

  9. pandas的合并、连接、去重、替换

    import pandas as pd import numpy as np # merge合并 ,类似于Excel中的vlookup df1 = pd.DataFrame({'key': ['K0' ...

随机推荐

  1. .NET Core:SignalR

    在Startup中的ConfigureServices方法中配置:services.AddSignalR(); 跨域设置中需要更改设置:services.AddCors(options => o ...

  2. python运维开发常用模块(一)psutil

    1.模块简介 psutil是一个跨平台库(http://code.google.com/p/psutil/),能够轻 松实现获取系统运行的进程和系统利用率(包括CPU.内存.磁盘.网 络等)信息.它主 ...

  3. SpringBoot第十四篇:统一异常处理

    作者:追梦1819 原文:https://www.cnblogs.com/yanfei1819/p/10984081.html 版权声明:本文为博主原创文章,转载请附上博文链接! 引言   本文将谈论 ...

  4. vue表单验证不通过,依然能执行点击事件里面的代码?

    遇到的问题:表单提交的时候,写了rules,明明验证不通过依然执行了点击事件里面的代码. 这个验证有什么用? 后来 我看elementUI组件才发现,我漏写了几行代码. methods里面这样写 完美 ...

  5. 小记:iterator && auto

    小记:iterator && auto iterator 众所周知,我们有一种强大的东西,它叫做STL,比如queue.vector.set.map.multimap .deque等. ...

  6. apache poi操作office文档----java在线预览txt、word、ppt、execel,pdf代码

    在页面上显示各种文档中的内容.在servlet中的逻辑 word: BufferedInputStream bis = null;  URL url = null;  HttpURLConnectio ...

  7. 用友UI层获取机构的方法

    U层: UFIDA.U9.UI.PDHelper.PDContext.Current.OrgIDPDContext.Current.OrgRef.CodeColumn

  8. 在 VSCode 调试过程中,使用 Watcher,免手动重新编译

    1.安装Microsoft.DotNet.Watcher.Tools包 dotnet add package Microsoft.DotNet.Watcher.Tools --version 2.0. ...

  9. Macro的写法 `( , ,@ )

    另外的注意点: 1.  同名符号的 “变量捕捉” (varible capture) 解决方式:  with-gensym 生成几个unique name-s, 然后将它们各自绑定上参数值 2. 多次 ...

  10. java自适应响应式 企业网站源码 SSM 生成静态化 手机 平板 PC

    java 企业网站源码 前后台都有 静态模版引擎, 代码生成器大大提高开发效率 系统介绍: 1.网站后台采用主流的 SSM 框架 jsp JSTL,网站后台采用freemaker静态化模版引擎生成ht ...