P4568 飞行路线 分层图最短路
P4568 飞行路线 分层图最短路
分层图最短路
问题模型
求最短路时,可有\(k\)次更改边权(减为0)
思路
在普通求\(Dijkstra\)基础上,\(dis[x][j]\)多开一维\(j\)以存已用了多少次机会,然后每次松弛时,做完普通松弛操作后,还要使用一次机会(如果可以),类同\(DP\)。
每次普通松弛:
\]
如果还可以使用(\(j<k\)):
\]
AC Code:
#include <cstdio>
#include <vector>
#include <cstring>
#include <queue>
#define MAXN 10010
#define MAXK 11
#define MIN(A,B) ((A)<(B)?(A):(B))
using namespace std;
int n,m,k,s,e;
bool vis[MAXN][MAXK];
struct edge{
int v,w;
edge(int v, int w):v(v),w(w){}
};
vector <edge> mp[MAXN];
struct item{
int dis, k, v;
item(int dis, int k, int v):dis(dis), k(k), v(v){}
bool operator < (const item a) const{
return dis > a.dis;
}
};
int dis[MAXN][MAXK];
priority_queue <item> q;
void Dij(){
memset(dis, 0x3f, sizeof(dis));
dis[s][0]=0;
q.push(item(0,0,s));
while(!q.empty()){
item cur = q.top();q.pop();
if(vis[cur.v][cur.k]) continue;
vis[cur.v][cur.k] = 1;
for(register int i=0;i<mp[cur.v].size();++i){
int v = mp[cur.v][i].v, w = mp[cur.v][i].w;
if(cur.k<k&&!vis[v][cur.k+1]&&dis[v][cur.k+1]>dis[cur.v][cur.k]){ // 使用机会
dis[v][cur.k+1] = dis[cur.v][cur.k];
q.push(item(dis[v][cur.k+1], cur.k+1, v));
}
if(!vis[v][cur.k]&&dis[v][cur.k]>dis[cur.v][cur.k]+w){ // 普通松弛
dis[v][cur.k] = dis[cur.v][cur.k]+w;
q.push(item(dis[v][cur.k], cur.k, v));
}
}
}
}
int main()
{
scanf("%d %d %d %d %d", &n, &m, &k, &s, &e),s++,e++;
for(int i=1;i<=m;++i){
int a,b,c;
scanf("%d %d %d", &a, &b, &c),++a,++b;
mp[a].push_back(edge(b,c));
mp[b].push_back(edge(a,c));
}
Dij();
int ans=0x3ffffff;
for(int i=0;i<=k;++i)
ans = MIN(ans, dis[e][i]); // 遍历统计答案,机会不一定用完
printf("%d", ans);
return 0;
}
P4568 飞行路线 分层图最短路的更多相关文章
- bzoj2763 [JLOI]飞行路线 分层图最短路
问题描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...
- P4568 [JLOI2011]飞行路线 分层图最短路
思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...
- BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)
题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...
- [JLOI2011]飞行路线 分层图最短路
题目描述: Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一 ...
- 【bzoj2763】[JLOI2011]飞行路线 分层图最短路
题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...
- bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...
- BZOJ2763[JLOI2011]飞行路线 [分层图最短路]
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2523 Solved: 946[Submit][Statu ...
- [JLOI2011]飞行路线 (分层图,最短路)
题目链接 Solution 建立 \(k+1\) 层图跑 \(Dijkstra\) 就好了. Code #include<bits/stdc++.h> #define ll long lo ...
- [bzoj2763][JLOI2011]飞行路线——分层图最短路
水题.不多说什么. #include <bits/stdc++.h> using namespace std; const int maxn = 10010; const int maxk ...
随机推荐
- Spark 系列(二)—— Spark开发环境搭建
一.安装Spark 1.1 下载并解压 官方下载地址:http://spark.apache.org/downloads.html ,选择 Spark 版本和对应的 Hadoop 版本后再下载: 解压 ...
- VsCode中好用的git源代码管理插件GitLens
1.在插件tab搜索GitLens 2.安装成功后将光标移至代码行即会显示代码编写者 3.在VsCode左侧菜单栏,点击GitLens图标即可查看History,也可以查看全部的日志 4.查看上下pu ...
- 机器码-字节码-CLR-JIT-托管代码-非托管代码-unsafe-GC-fixed
0. 机器码 直接由机器码对应平台的CPU执行的指令集, 因此无法在其他指令集的CPU上运行. 无法跨平台. 由本地代码编译得到. (托管代码通过JIT生成) 1. 字节码 即 bytecode 是一 ...
- vue计算属性的使用
props:['name'],//接收父组件的数据 computed:{//当数据发生改变时,会自动去计算 zojia:function(){ //zojia是自己声明的函数 let a = null ...
- Jest did not exit one second after the test run has completed.
使用 Jest 进行单元测试时出现如下问题: Jest did not exit one second after the test run has completed. This usually m ...
- js两个变量互换值
js两个变量交换值 这个问题看似很基础,但是有很多的实现方式,你知道的有多少呢,网上也有很多的方法,下面就来总结一下 中间变量(临时变量) 临时变量其实很好理解,通过一个中间变量进行交换值 var s ...
- c#测量字体宽度
Bitmap image_size = * count, f.Height);//初始化大小 Graphics size_g = Graphics.FromImage(image_size); Siz ...
- 广联达C++面经(一站式西安) - 2019秋招
9月7号通知在广联达西安面试,早上在高新面完中兴一面就赶忙坐地铁倒公交去面试了. 一面(大概30-40min) 刚去签了一个到,就带我去面试了,在一个小型会议室,面试我的是一个女面试官(第一次碰见女 ...
- 三步操作gitHub汉化插件安装--谷歌浏览器
如果本文对你有用,请爱心点个赞,提高排名,帮助更多的人.谢谢大家!❤ 如果解决不了,可以在文末进群交流. 一个好用基于chrome的插件,用来汉化gitHub,大致效果图如下: 步骤一: 首先下载谷歌 ...
- UVA1194 Machine Schedule[二分图最小点覆盖]
题意翻译 有两台机器 A,B 分别有 n,m 种模式. 现在有 k 个任务.对于每个任务 i ,给定两个整数$ a_i\(和\) b_i$,表示如果该任务在 A上执行,需要设置模式为 \(a_i\): ...