题目描述

小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。

输入输出格式

输入格式:

第一行,三个整数N、M、K。

第二行,N个整数,表示小B的序列。

接下来的M行,每行两个整数L、R。

输出格式:

M行,每行一个整数,其中第i行的整数表示第i个询问的答案。

输入输出样例

输入样例#1: 复制

6 4 3
1 3 2 1 1 3
1 4
2 6
3 5
5 6
输出样例#1: 复制

6
9
5
2

说明

对于全部的数据,1<=N、M、K<=50000

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; const int N=; int n,m,k;
int a[N],c[N];
int ans,Ans[N];
int belong[N];
struct Querry
{
int tim,l,r;
bool operator < (const Querry &a) const
{
if(belong[l]==belong[a.l]) return belong[r]<belong[a.r];
return belong[l]<belong[a.l];
}
}q[N]; int read()
{
char c=getchar();int num=;
for(;!isdigit(c);c=getchar());
for(;isdigit(c);c=getchar())
num=num*+c-'';
return num;
} void init()
{
n=read(),m=read(),k=read();
int size=sqrt(n);
for(int i=;i<=n;++i)
a[i]=read(),
belong[i]=(i-)/size+;
for(int i=;i<=m;++i)
q[i].l=read(),q[i].r=read(),q[i].tim=i;
sort(q+,q+m+); } /*void update(int now,bool type)
{
if(type)
{
ans-=c[now]*c[now];
++c[now];
ans+=c[now]*c[now];
}
else
{
ans-=c[now]*c[now];
--c[now];
ans+=c[now]*c[now];
}
}*/
void update(int now,bool type)
{
if(type)
ans+=c[now]<<|,++c[now]; //(a+1)*(a+1)==a*a+2*a+1,比a*a多了2*a+1
else
ans-=(c[now]<<)-,--c[now]; //(a-1)*(a-1)==a*a-2*a+1,比a*a少了2*a-1
} void work()
{
for(int i=q[].l;i<=q[].r;++i)
update(a[i],);
Ans[q[].tim]=ans;
for(int i=;i<=m;++i)
{
if(q[i].l>q[i-].l)
for(int j=q[i-].l;j<q[i].l;++j)
update(a[j],);
if(q[i].l<q[i-].l)
for(int j=q[i].l;j<q[i-].l;++j)
update(a[j],);
if(q[i].r<q[i-].r)
for(int j=q[i].r+;j<=q[i-].r;++j)
update(a[j],);
if(q[i].r>q[i-].r)
for(int j=q[i-].r+;j<=q[i].r;++j)
update(a[j],);
Ans[q[i].tim]=ans;
}
for(int i=;i<=m;++i)
printf("%d\n",Ans[i]);
} int main()
{
init();
work();
return ;
}

P2709 小B的询问 (莫队板子)的更多相关文章

  1. 洛谷P2709 小B的询问 莫队

    小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...

  2. 洛谷P2709 小B的询问 莫队做法

    题干 这个是用来学莫队的例题,洛谷详解 需要注意的一点,一定要分块!不然会慢很多(直接TLE) 其中分块只在排序的时候要用,并且是给问题右端点分块 再就是注意add与del函数里的操作,增加数量不提, ...

  3. P2709 小B的询问-莫队

    思路 :依旧是 分块 块内按照 r 排序 不同块按照 L排序,处理好增加 删除对结果的影响即可. #include<bits/stdc++.h> using namespace std; ...

  4. BZOJ3781:小B的询问(莫队)

    Description 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L ...

  5. 小B的询问 莫队分块

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  6. 【bzoj3781】小B的询问 莫队算法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6803821.html 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L ...

  7. luogu 2709 小B的询问 莫队

    题目链接 Description 小B有一个序列,包含\(N\)个\(1-K\)之间的整数.他一共有\(M\)个询问,每个询问给定一个区间\([L..R]\),求\(\sum_{i=1}^{K}c_i ...

  8. luogu 2709小b的询问--莫队

    https://www.luogu.org/problemnew/show/P2709 无修改的莫队几乎没有什么太高深的套路,比较模板吧,大多都是在那两个函数上动手脚. 这题询问每一种数字数量的平方和 ...

  9. luoguP2709 小B的询问 [莫队]

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  10. 【luogu1709】小B的询问 - 莫队

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

随机推荐

  1. 【1】BIO与NIO、AIO的区别

    一.BIO 在JDK1.4出来之前,我们建立网络连接的时候采用BIO模式,需要先在服务端启动一个ServerSocket,然后在客户端启动Socket来对服务端进行通信,默认情况下服务端需要对每个请求 ...

  2. 7、注解@Mapper、@MapperScan

    7.注解@Mapper.@MapperScan 2018年09月20日 11:12:41 飞奔的加瓦 阅读数 3284    版权声明:版权声明:本文为博主原创文章,未经博主允许不得转载. https ...

  3. [jsp学习笔记] jsp过滤器

  4. WebSocket 转

    即时通信常用手段 1.第三方平台 谷歌.腾讯 环信等多如牛毛,其中谷歌即时通信是免费的,但免费就是免费的并不好用.其他的一些第三方一般收费的,使用要则限流(1s/限制x条消息)要么则限制用户数. 但稳 ...

  5. Redis安装--CentOS7上安装Redis

    echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!!! 1.R ...

  6. 使用 Code First 数据库迁移

    当 Entity Framework Code First 的数据模型发生改变时,默认会引发一个System.InvalidOperationException 的异常.解决方法是使用DropCrea ...

  7. 【一起学源码-微服务】Netflix Eureka 源码一:Netflix Eureka 源码初探,我们为什么要读源码?

    前言 最近发现 网上好多自己的博客,很多朋友转载了文章却不加下 原载地址,本文欢迎转载一起学习,请在目录出加上原出处,感谢.转载来自:博客(一枝花算不算浪漫) 看了前面几篇文章的小伙伴知道,前几天在学 ...

  8. 开发QQ互联ios版Ane扩张 辛酸史

    来源:http://www.myexception.cn/operating-system/1451490.html 开发QQ互联ios版Ane扩展 辛酸史 开发QQ互联ios版Ane扩展辛酸史: 1 ...

  9. Linux正则表达式,grep总结,sed用法

    原文: 1.sed   流编辑器,实现对文字的增删改替换查(过滤.取行),能同时处理多个文件多行的内容,可以不对原文件改动,把整个文件 输入到屏幕,可以把只匹配到模式的内容输入到屏幕上.还可以对原文件 ...

  10. linux删除命令的简单查找使用--临时找来用的

    ---恢复内容开始--- linux删除某个文件:rm -f filename;     mysql清空数据库,并且主键回到1:TRUNCATE TABLE tablename:   drop tab ...