题目描述

小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。

输入输出格式

输入格式:

第一行,三个整数N、M、K。

第二行,N个整数,表示小B的序列。

接下来的M行,每行两个整数L、R。

输出格式:

M行,每行一个整数,其中第i行的整数表示第i个询问的答案。

输入输出样例

输入样例#1: 复制

6 4 3
1 3 2 1 1 3
1 4
2 6
3 5
5 6
输出样例#1: 复制

6
9
5
2

说明

对于全部的数据,1<=N、M、K<=50000

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; const int N=; int n,m,k;
int a[N],c[N];
int ans,Ans[N];
int belong[N];
struct Querry
{
int tim,l,r;
bool operator < (const Querry &a) const
{
if(belong[l]==belong[a.l]) return belong[r]<belong[a.r];
return belong[l]<belong[a.l];
}
}q[N]; int read()
{
char c=getchar();int num=;
for(;!isdigit(c);c=getchar());
for(;isdigit(c);c=getchar())
num=num*+c-'';
return num;
} void init()
{
n=read(),m=read(),k=read();
int size=sqrt(n);
for(int i=;i<=n;++i)
a[i]=read(),
belong[i]=(i-)/size+;
for(int i=;i<=m;++i)
q[i].l=read(),q[i].r=read(),q[i].tim=i;
sort(q+,q+m+); } /*void update(int now,bool type)
{
if(type)
{
ans-=c[now]*c[now];
++c[now];
ans+=c[now]*c[now];
}
else
{
ans-=c[now]*c[now];
--c[now];
ans+=c[now]*c[now];
}
}*/
void update(int now,bool type)
{
if(type)
ans+=c[now]<<|,++c[now]; //(a+1)*(a+1)==a*a+2*a+1,比a*a多了2*a+1
else
ans-=(c[now]<<)-,--c[now]; //(a-1)*(a-1)==a*a-2*a+1,比a*a少了2*a-1
} void work()
{
for(int i=q[].l;i<=q[].r;++i)
update(a[i],);
Ans[q[].tim]=ans;
for(int i=;i<=m;++i)
{
if(q[i].l>q[i-].l)
for(int j=q[i-].l;j<q[i].l;++j)
update(a[j],);
if(q[i].l<q[i-].l)
for(int j=q[i].l;j<q[i-].l;++j)
update(a[j],);
if(q[i].r<q[i-].r)
for(int j=q[i].r+;j<=q[i-].r;++j)
update(a[j],);
if(q[i].r>q[i-].r)
for(int j=q[i-].r+;j<=q[i].r;++j)
update(a[j],);
Ans[q[i].tim]=ans;
}
for(int i=;i<=m;++i)
printf("%d\n",Ans[i]);
} int main()
{
init();
work();
return ;
}

P2709 小B的询问 (莫队板子)的更多相关文章

  1. 洛谷P2709 小B的询问 莫队

    小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...

  2. 洛谷P2709 小B的询问 莫队做法

    题干 这个是用来学莫队的例题,洛谷详解 需要注意的一点,一定要分块!不然会慢很多(直接TLE) 其中分块只在排序的时候要用,并且是给问题右端点分块 再就是注意add与del函数里的操作,增加数量不提, ...

  3. P2709 小B的询问-莫队

    思路 :依旧是 分块 块内按照 r 排序 不同块按照 L排序,处理好增加 删除对结果的影响即可. #include<bits/stdc++.h> using namespace std; ...

  4. BZOJ3781:小B的询问(莫队)

    Description 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L ...

  5. 小B的询问 莫队分块

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  6. 【bzoj3781】小B的询问 莫队算法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6803821.html 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L ...

  7. luogu 2709 小B的询问 莫队

    题目链接 Description 小B有一个序列,包含\(N\)个\(1-K\)之间的整数.他一共有\(M\)个询问,每个询问给定一个区间\([L..R]\),求\(\sum_{i=1}^{K}c_i ...

  8. luogu 2709小b的询问--莫队

    https://www.luogu.org/problemnew/show/P2709 无修改的莫队几乎没有什么太高深的套路,比较模板吧,大多都是在那两个函数上动手脚. 这题询问每一种数字数量的平方和 ...

  9. luoguP2709 小B的询问 [莫队]

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  10. 【luogu1709】小B的询问 - 莫队

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

随机推荐

  1. Springboot 结合百度IORC实现自定义模板图片识别

    前言: 首先呢,最近再公司的项目当中遇到这样的一个问题,就是需要识别图片,提取图片当中的关键语句,而且识别的语句当然是人家手写体识别,翻来覆去一想,最终还是决定使用百度的OCR帮助我解决这一项需求 话 ...

  2. 亲密字符串之Javascript解法

    本题为leetcode第859题,原题链接在此:https://leetcode-cn.com/problems/buddy-strings/submissions/ 给定两个由小写字母构成的字符串  ...

  3. 使用gulp构建项目

    gulp.js作为一个前端构建工具,类似于webpack.Grountjs.rollupjs,不过相对于其他几种打包工具,gulp的使用更轻量,配置更简单,打包速度更快,今天不说他们几个的区别,也不说 ...

  4. oracle rpad()和lpad()函数

    函数参数:rpad( string1, padded_length, [ pad_string ] ) rpad函数从右边对字符串使用指定的字符进行填充 string 表示:被填充的字符串 padde ...

  5. cpio命令

    RPM包中文件提取 cpio命令主要有三种基本模式:"-o"模式指的是copy-out模式,就是把数据备份到文件库中:"-i"模式指的是copy-in模式,就是 ...

  6. pod-test

    apiVersion: v1 kind: Pod metadata:   name: init-demo   # 命名空间   namespace: default   labels:     app ...

  7. python蟒蛇绘制的代码以及目前还不知道怎么用的RGB颜色对照表

    #PythonDraw.py import turtle#引入海龟库 turtle.setup(650,350,200,200)#确定窗口大小,长650,高350,确定窗口位置,距离电脑左上角200, ...

  8. STL用法之set

    [C++::STL]之set的用法 c++ set求差集,并集,交集

  9. Yum下载rpm包、不分析依赖关系强制安装

    在安装包后面加两个参数 --nodeps --force 如下: [root@sh158-xen data]#rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_6 ...

  10. 《BUG创造队》作业8:软件测试与Alpha冲刺(第一天)

    项目 内容 这个作业属于哪个课程 2016级软件工程 这个作业的要求在哪里 实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 BUG创造队 作业学习目标 (1)掌握软件测试基础技术.(2)学习 ...