loj #2053 莫队
\(des\)
存在一个长度为 \(n\) 的数字 \(s\), 一个素数 \(P\)
\(m\) 次询问一段区间 \([l, r]\) 内的子串构成的数是 \(P\) 的倍数
\(sol\)
对于一次询问 \([l, r]\)
答案为
\]
等价于
\]
当 \(P \ne 2 且 P \ne 5\) 时,\(p \nmid 10^j\)
所以原式等价于
\]
令
\(a_k = s_k \times 10^{-k} \pmod P\)
\(sum_k = \sum_{i=1}^{k} a_i \pmod P\)
所以原式等价于
& \sum_{i=l}^{r} \sum_{j=i}^{r} [(\sum_{k=i}^{j} a_k) \pmod P \equiv 0] \\
= &\sum_{i=l}^{r} \sum_{j=i}^{r} [(sum_j = sum_{i-1})]
\end{split}
\]
对 \(sum\) 离散化后转化为区间查询相等的数的个数
莫队
对于 \(P = 2 或 P = 5\) 的情况特判即可
时间复杂度 \(O(n^{1.5} + nlogn)\)
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
#define Rep(i, a, b) for(int i = a; i <= b; i ++)
#define LL long long
#define gc getchar()
inline int read() {
int x = 0; char c = gc;
while(c < '0' || c > '9') c = gc;
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
return x;
}
int P, n, m;
char s[N];
int pos[N], block;
struct Node {
int l, r, id;
bool operator < (const Node a) const {
if(pos[this-> l] == pos[a.l]) return pos[this-> r] < pos[a.r];
return pos[this-> l] < pos[a.l];
}
} Ask[N];
LL S[N], A[N], Sum[N], Ten[N] = {0, 10};
LL Copysum[N];
LL Tong[N], Answer[N];
LL Ksm(LL a, LL b) {
LL ret = 1;
while(b) {
if(b & 1) ret = ret * a % P;
a = a * a % P;
b >>= 1;
}
return ret;
}
LL Now_ans;
inline void Cut(int x) {Tong[Sum[x]] --; Now_ans -= Tong[Sum[x]];}
inline void Add(int x) {Now_ans += Tong[Sum[x]]; Tong[Sum[x]] ++;}
void MoDui() {
int L = Ask[1].l, R = L - 1;
Rep(i, 1, m) {
int l = Ask[i].l - 1, r = Ask[i].r;
for(; L < l; L ++) Cut(L);
for(; R > r; R --) Cut(R);
for(; L > l; L --) Add(L - 1);
for(; R < r; R ++) Add(R + 1);
Answer[Ask[i].id] = Now_ans;
}
}
LL totsum[N], totcnt[N];
void Special_Judge() {
Rep(i, 1, n) {
totcnt[i] = totcnt[i - 1] + ((s[i] - '0') % P == 0 ? 1 : 0);
totsum[i] = totsum[i - 1] + ((s[i] - '0') % P == 0 ? i : 0);
}
Rep(i, 1, m) {
int l = Ask[i].l, r = Ask[i].r;
cout << totsum[r] - totsum[l - 1] - (l - 1) * (totcnt[r] - totcnt[l - 1]) << "\n";
}
}
int main() {
P = read();
scanf("%s",s + 1);
n = strlen(s + 1);
m = read();
Rep(i, 1, m) Ask[i] = (Node) {read(), read(), i};
if(P == 2 || P == 5) {
Special_Judge(); return 0;
}
block = sqrt(n);
Rep(i, 1, n) pos[i] = (i - 1) / block + 1;
sort(Ask + 1, Ask + m + 1);
Rep(i, 1, n) S[i] = (s[i] - '0') % P;
Rep(i, 2, n) Ten[i] = (Ten[i - 1] * 10) % P;
Rep(i, 1, n) A[i] = S[i] * Ksm(Ten[i], P - 2) % P;
Rep(i, 1, n) Sum[i] = (Sum[i - 1] + A[i]) % P;
Rep(i, 1, n) Copysum[i] = Sum[i];
sort(Copysum + 1, Copysum + n + 1);
Rep(i, 1, n) Sum[i] = lower_bound(Copysum, Copysum + n + 1, Sum[i]) - Copysum;
MoDui();
Rep(i, 1, m) cout << Answer[i] << "\n";
return 0;
}
loj #2053 莫队的更多相关文章
- LOJ.6504.[雅礼集训2018 Day5]Convex(回滚莫队)
LOJ 莫队.发现只需要维护前驱后继就可以了. 但是加入一个点需要找到它当前的前驱后继,很麻烦还带个\(\log\). 但是如果只有删除某个点,只需要更新一下它的前驱后继即可. 用回滚莫队就好惹. 撤 ...
- LOJ#6504. 「雅礼集训 2018 Day5」Convex(回滚莫队)
题面 传送门 题解 因为并不强制在线,我们可以考虑莫队 然而莫队的时候有个问题,删除很简单,除去它和前驱后继的贡献即可.但是插入的话却要找到前驱后继再插入,非常麻烦 那么我们把它变成只删除的回滚莫队就 ...
- loj#6517. 「雅礼集训 2018 Day11」字符串(回滚莫队)
传送门 模拟赛的时候纯暴力竟然骗了\(70\)分-- 首先对于一堆\(g\)怎么计算概率应该很好想,用总的区间数减去不合法的区间数就行了,简而言之对\(g\)排个序,每一段长为\(d\)的连续序列的区 ...
- BZOJ.4826.[AHOI/HNOI2017]影魔(树状数组/莫队 单调栈)
BZOJ LOJ 洛谷 之前看\(mjt\)用莫队写了,以为是一种正解,码了3h结果在LOJ T了没A= = 心态爆炸(upd:发现是用C++11(NOI)交的,用C++11交就快一倍了...) 深刻 ...
- [Ynoi2016]这是我自己的发明(莫队)
话说这道题数据是不是都是链啊,我不手动扩栈就全 \(RE\)... 不过 \(A\) 了这题还是很爽的,通过昨晚到今天早上的奋斗,终于肝出了这题 其实楼上说的也差不多了,就是把区间拆掉然后莫队瞎搞 弱 ...
- BZOJ4241:历史研究(回滚莫队)
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- 「雅礼集训 2018 Day5」Convex 凸包、莫队
LOJ 看到离线区间操作仍然考虑莫队,然后可以发现:我们对于原来的凸包集合按照极角序维护一个链表,那么删除一个位置可以\(O(1)\),撤回删除操作也可以\(O(1)\)(因为原来的链表结构中当前节点 ...
- bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5016 https://loj.ac/problem/2254 题解 原式是这样的 \[ \su ...
- BZOJ 3289: Mato的文件管理[莫队算法 树状数组]
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 2399 Solved: 988[Submit][Status][Di ...
随机推荐
- Synchronized 与Lock的不同之处
Synchronized 与Lock的不同之处 用法不一样.synchronized既可以加在方法上,也可以加载特定的代码块上,括号中表示需要锁的对象.而Lock需要显示地指定起始位置和终止位置.sy ...
- 使用Identity Server 4建立Authorization Server
使用Identity Server 4建立Authorization Server (6) - js(angular5) 客户端 摘要: 预备知识: http://www.cnblogs.com/cg ...
- BUAA_OO第四单元总结性博客作业——UML(Floyd实现规则检查?)
一.架构设计 1.UML第一次作业——类图 第一次作业基于不同element在UML规格中的从属关系来设计架构.继承了UmlInteraction接口的MyUmlInteraction类是主要的交互层 ...
- 修复win10系统的引导
上周末时,在安装完linux后,进入win10系统后,想做个系统的引导菜单,用了easyBCD,后来一不小心删除了win10的引导菜单(window boot manager). 这样,就造成了我wi ...
- Unity3d与iOS交互开发
一.Unity3d To iOS: 最近要做一个商品和人体模型T台秀相关的功能,要用到Unity3D,搜集了一些资料先保存下来. 1.创建一个C#文件 SdkToIOS.cs 这是调用iOS函数的 ...
- 分享个免费的svn平台
平时在工作中难免会用到svn,但是要自己搭建一个,未免成本太高,近来,本人接触到一个免费的svn平台(可能大神们早就发现了),个人使用还是足够了. 地址:https://svnbucket.com 相 ...
- day34-python之进程调用
1.信号量 import threading,time class myThread(threading.Thread): def run(self): if semaphore.acquire(): ...
- Github的fork进行同步
最近项目要求每个开发人员都有自己fork,需要在自己的fork下进行开发.这样就涉及的到fork和原仓库的同步问题. 在网上查找到fork和原仓库同步的方法,如下转载自网上查找的内容,使用终端命令行进 ...
- Spark运行原理【史上最详细】
https://blog.csdn.net/lovechendongxing/article/details/81746988 Spark应用程序以进程集合为单位在分布式集群上运行,通过driver程 ...
- Android笔记(六十)Android总结:四大组件——BroadcastReceiver篇
什么是BroadcastReceiver BroadcastReceiver是Android体系的四大组件之一,本质上是一种全局的监听器,用于监听系统全局的广播消息,正式因为其本质为全局监听,因此可以 ...