颂魔眼中的一眼题我大湖南竟无一人\(AC\)

首先我们考虑一个性质:我们肯定存在一种最优解,满足从某个点出发,一直往前走,不停下来。

证明:我们假设存在一种最优解,是在\(t_i\)的时候到达\(a\)点,那么我肯定会在\(t_i - x(x≥1)\)的时间会到达\(a - 1\)号点

我们假设\(x != 1\),即我们会在\(a-1\)点进行停留,此时那么我们到达\(a - 2\)号点的时间\(<t_i - 2\),到达\(a-3\)号点的时间\(<t_i - 3\)

那么如果我有一个点\(a - y\)是在\(t_i - y\)时刻出现,那么我们不能取到这个点,必须要重新转一圈

那么如果\(x = 1\),且每一次走都没停下来,我们可以保证我们在\(x!=1\)经过该点后经过该点

所以说如果\(x!=1\)可以经过的所有点我们肯定在\(x==1\)的情况下都能经过,而且\(x==1\)情况下的一些点,\(x != 1\)不一定能经过,所以我们肯定每一次取\(x==1\)是一种最优情况

然后我们考虑进一步转化题意:假设我在一个点,从\(T_i\)时刻出发,满足转一圈刚好标记所有点,那么我们\(T_i\)以前的时间实际上是没有用的

由于环不好处理,而且转化后我们保证只要走一圈,所以我们可以断环成链

于是我们可以考虑,找到一个最好的起点\(i\),找到最好的\(T_i\),使得从i点在\(T_i\)时刻出发答案最优,即我们要求这个式子:\(min(T_i+n)\)其中满足对于任意的\(x\),\(T_i≥t_x-x+i\)

即我们要求:\(min_{i=1}^n(n + max_{x=i+1}^{2*n}(i-x + t_x))=min_{i=1}^n(n+i+max_{x=i+1}^{2*n}(x-t_x))\)

所以我们枚举每一个起点,找到最大的\(t_x-x\),用线段树维护,单次操作复杂度为\(O(NlogN)\),现在问题要考虑怎么修改

令\(a_i=t_i-i\),所以原式变成\(n+min_{i=1}^n(max_{x=i+1}^{2*n}(a_x)+i)\)

不难发现,\(max_{x=i+1}^{i+n}(a_x)\)是单调不增的。于是,我们维护一个单调栈,对于每一个\(max_{x=i+1}^{i+n}(a_x)\)连续的一段,找到一个最小的\(i\)即可,单调栈可以用线段树来维护(详见我楼房重建的题解),把楼房重建的求和改成\(max\)就行了,于是复杂度就变成了\(O(Nlog^2N)\)

\(Code:\)

#include<bits/stdc++.h>
using namespace std;
int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x * f;
}
#define rep(i, s, t) for(int i = s; i <= t; ++ i)
#define ls k * 2
#define rs k * 2 + 1
#define maxn 100005
int n, m, p, last, a[maxn << 1], ma[maxn << 3], ans[maxn << 3];
int query(int k, int l, int r, int v) {
if(l == r) return l + max(v, ma[k]);
int mid = (l + r) >> 1;
if(ma[rs] >= v) return min(ans[k], query(rs, mid + 1, r, v));
return min(mid + v + 1, query(ls, l, mid, v));
}
inline void updata(int k, int l, int r, int mid) {
ma[k] = max(ma[ls], ma[rs]), ans[k] = query(ls, l, mid, ma[rs]);
}
void modify(int k, int l, int r, int ll) {
if(l == r) return (void)(ans[k] = a[l] + l, ma[k] = a[l]);
int mid = (l + r) >> 1;
if(ll <= mid) modify(ls, l, mid, ll);
else modify(rs, mid + 1, r, ll);
updata(k, l, r, mid);
}
void build(int k, int l, int r) {
if(l == r) return (void)(ans[k] = a[l] + l, ma[k] = a[l]);
int mid = (l + r) >> 1;
build(ls, l, mid), build(rs, mid + 1, r), updata(k, l, r, mid);
}
int main() {
n = read(), m = read(), p = read();
rep(i, 1, n) a[i] = read() - i, a[i + n] = a[i] - n;
build(1, 1, n * 2);
printf("%d\n", last = ans[1] + n - 1);
rep(i, 1, m) {
int x = read() ^ (p * last), y = read() ^ (p * last);
a[x] = y - x, a[x + n] = y - x - n, modify(1, 1, 2 * n, x), modify(1, 1, 2 * n, x + n);
printf("%d\n", last = ans[1] + n - 1);
}
return 0;
}

P4425 【[HNOI/AHOI2018]转盘】的更多相关文章

  1. 洛谷P4425 [HNOI/AHOI2018]转盘(线段树)

    题意 题目链接 Sol 首先猜一个结论:对于每次询问,枚举一个起点然后不断等到某个点出现时才走到下一个点一定是最优的. 证明不会,考场上拍了3w组没错应该就是对的吧... 首先把数组倍长一下方便枚举起 ...

  2. [HNOI/AHOI2018]转盘(线段树优化单调)

    gugu  bz lei了lei了,事独流体毒瘤题 一句话题意:任选一个点开始,每个时刻向前走一步或者站着不动 问实现每一个点都在$T_i$之后被访问到的最短时间 Step 1 该题可证: 最优方案必 ...

  3. BZOJ5286:[HNOI/AHOI2018]转盘——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5286 https://www.luogu.org/problemnew/show/P4425 ht ...

  4. [HNOI/AHOI2018]转盘

    一个结论:一定存在一个最优解只走一圈.否则考虑从最后一个结束位置开始一定可以达到相同效果 画个图,类似是一种斜线感觉 考虑一个高度贡献的最高点 对于i开始的连续n个,答案是:max(Tj-j)+i+n ...

  5. BZOJ5286 HNOI/AHOI2018转盘(分块/线段树)

    显然最优走法是先一直停在初始位置然后一次性走完一圈.将序列倍长后,相当于找一个长度为n的区间[l,l+n),使其中ti+l+n-1-i的最大值最小.容易发现ti-i>ti+n-(i+n),所以也 ...

  6. 【题解】Luogu P4436 [HNOI/AHOI2018]游戏

    原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...

  7. [Bzoj5285][洛谷P4424][HNOI/AHOI2018]寻宝游戏(bitset)

    P4424 [HNOI/AHOI2018]寻宝游戏 某大学每年都会有一次Mystery Hunt的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生 ...

  8. 【LG4437】[HNOI/AHOI2018]排列

    [LG4437][HNOI/AHOI2018]排列 题面 洛谷 题解 题面里这个毒瘤的东西我们转化一下: 对于\(\forall k,j\),若\(p_k=a_{p_j}\),则\(k<j\). ...

  9. 洛谷P4425 转盘 [HNOI/AHOI2018] 线段树+单调栈

    正解:线段树+单调栈 解题报告: 传送门! 1551又是一道灵巧连题意都麻油看懂的题,,,,所以先解释一下题意好了,,,, 给定一个n元环 可以从0时刻开始从任一位置出发 每次可以选择向前走一步或者在 ...

随机推荐

  1. [CF724G]Xor-matic Number of the Graph

    题目大意:有一张$n$个点$m$条边的无向图,定义三元组$(u,v,s)$是有趣的,当且仅当有一条$u\to v$的路径,路径上所有边的异或和为$s$.问所有有趣的三元组的$s$之和.$n\leqsl ...

  2. [转]mongodb authentication 设置权限之后,新建个管理账户和一般数据库用户,在win 7 64bit 环境下测试使用实例

    如果之前安装mongodb时没有使用 --auth,那么必须要卸载MongoDB服务,进行重新安装,设置账号权限才生效! 主要是解决在测试使用mongo db 时候,总是出现的MongoAuthent ...

  3. power shell命令添加SharePoint用户组与用户(用户为域用户)

    查看SharePoint用户组 Get-PnPGroup 查看某一用户组 Get-PnPGroup -Identity "用户组名" 查看某一用户组下的所有成员 Get-PnPGr ...

  4. java 使用GraphQL-关联对象

    GraphQL并不会实现关联查询,数据关联需要程序自己实现 官网首页有介绍获取多个资源只需要一个请求,如想获取用户信息和身份证信息,原来需要先查用户信息,再通过用户id查询身份证信息,而在GraphQ ...

  5. Android ProGuard:代码混淆压缩

    写这篇文章的目的 一直以来,在项目中需要进行代码混淆时每次都要去翻文档,很麻烦.也没有像写代码那样记得那么多.既然要查来查去,就不如自己捋一捋这个知识点了,被人写的终究还是别人的.所以自己去翻看了很多 ...

  6. Jmeter学习笔记(十四)——逻辑控制器

    一.逻辑控制器简单介绍 Jmeter中逻辑控制器(Logic Controllers)的作用域只对其子节点的sampler有效,作用是控制采样器的执行顺序.放在逻辑控制器下面的所有的采样器都会当做一个 ...

  7. RabbitMQ-python应用

    介绍 官方文档:https://www.rabbitmq.com/tutorials/tutorial-one-python.html RabbitMQ是一个基于AMQP协议的消息代理.它的工作就是接 ...

  8. 2019.7月-前端面试总结(H5+C3+JS+ES6+Vue+浏览器)

    第二次面试 HTML HTML5中的新标签,举例一下 canvas绘画,本地离线存储localStorage,sessionStorage,video和audio元素,语义化元素,表单类型(date, ...

  9. 【HCIA Gauss】学习汇总-数据库基础介绍-1

    存放在数据库中数据的特点 :永久存储 又组织 可共享 数据库系统是由 数据库 数据库管理系统 应用程序 管理员成员 组成的存储 管理 处理和维护数据的系统 三个阶段:人工阶段 ,文件系统阶段,数据库系 ...

  10. svn: local unversioned, incoming file add upon update

    svn 文件冲突: D C 文件名 > local unversioned, incoming file add upon update svn revert 文件名 提示: 已恢复“文件名” ...