python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

auto-sklearn官网

https://automl.github.io/auto-sklearn/master/installation.html

https://automl.github.io/auto-sklearn/master/

auto-sklearn

auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator:

import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)

  

auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimizationmeta-learning and ensemble construction. Learn more about the technology behind auto-sklearn by reading our paper published at NIPS 2015 .

Example

import autosklearn.classification
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics
X, y = sklearn.datasets.load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)
automl = autosklearn.classification.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))

  

This will run for one hour and should result in an accuracy above 0.98.

License

auto-sklearn is licensed the same way as scikit-learn, namely the 3-clause BSD license.

Citing auto-sklearn

If you use auto-sklearn in a scientific publication, we would appreciate a reference to the following paper:

Efficient and Robust Automated Machine Learning, Feurer et al., Advances in Neural Information Processing Systems 28 (NIPS 2015).

Bibtex entry:

@incollection{NIPS2015_5872,
title = {Efficient and Robust Automated Machine Learning},
author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and
Springenberg, Jost and Blum, Manuel and Hutter, Frank},
booktitle = {Advances in Neural Information Processing Systems 28},
editor = {C. Cortes and N. D. Lawrence and D. D. Lee and M. Sugiyama and R. Garnett},
pages = {2962--2970},
year = {2015},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf}
}

Contributing

We appreciate all contribution to auto-sklearn, from bug reports and documentation to new features. If you want to contribute to the code, you can pick an issue from the issue tracker which is marked with Needs contributer.

Note

To avoid spending time on duplicate work or features that are unlikely to get merged, it is highly advised that you contact the developers by opening a github issue before starting to work.

When developing new features, please create a new branch from the development branch. When to submitting a pull request, make sure that all tests are still passing.

auto-sklearn安装官网(不支持Windows系统)

https://automl.github.io/auto-sklearn/master/installation.html

Installation

System requirements

auto-sklearn has the following system requirements:

For an explanation of missing Microsoft Windows and MAC OSX support please check the Section Windows/OSX compatibility.

Installing auto-sklearn

Please install all dependencies manually with:

curl https://raw.githubusercontent.com/automl/auto-sklearn/master/requirements.txt | xargs -n 1 -L 1 pip install

Then install auto-sklearn:

pip install auto-sklearn

We recommend installing auto-sklearn into a virtual environment or an Anaconda environment.

If the pip installation command fails, make sure you have the System requirements installed correctly.

Ubuntu installation

To provide a C++11 building environment and the lateste SWIG version on Ubuntu, run:

sudo apt-get install build-essential swig

Anaconda installation

Anaconda does not ship auto-sklearn, and there are no conda packages for auto-sklearn. Thus, it is easiest to install auto-sklearn as detailed in the Section Installing auto-sklearn.

A common installation problem under recent Linux distribution is the incompatibility of the compiler version used to compile the Python binary shipped by AnaConda and the compiler installed by the distribution. This can be solved by installing the gcc compiler shipped with AnaConda (as well as swig):

conda install gxx_linux-64 gcc_linux-64 swig

Windows/OSX compatibility

Windows

auto-sklearn relies heavily on the Python module resourceresource is part of Python’s Unix Specific Services and not available on a Windows machine. Therefore, it is not possible to run auto-sklearn on a Windows machine.

Possible solutions (not tested):

  • Windows 10 bash shell

  • virtual machine

  • docker image

Mac OSX

We currently do not know if auto-sklearn works on OSX. There are at least two issues holding us back from actively supporting OSX:

  • The resource module cannot enforce a memory limit on a Python process (see SMAC3/issues/115).

  • OSX machines on travis-ci take more than 30 minutes to spawn. This makes it impossible for us to run unit tests forauto-sklearn and its dependencies SMAC3 and ConfigSpace.

In case you’re having issues installing the pyrfr package, check out this installation suggestion on github.

Possible other solutions (not tested):

  • virtual machine

  • docker image

python信用评分卡建模(附代码,博主录制)

auto-sklearn的更多相关文章

  1. 机器学习之sklearn——聚类

    生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征 ...

  2. 使用sklearn进行集成学习——实践

    系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...

  3. 谁动了我的特征?——sklearn特征转换行为全记录

    目录 1 为什么要记录特征转换行为?2 有哪些特征转换的方式?3 特征转换的组合4 sklearn源码分析 4.1 一对一映射 4.2 一对多映射 4.3 多对多映射5 实践6 总结7 参考资料 1 ...

  4. sklearn两种保存模型的方式

    作者:卢嘉颖 链接:https://www.zhihu.com/question/27187105/answer/97334347 来源:知乎 著作权归作者所有,转载请联系作者获得授权. 1. pic ...

  5. [转]使用sklearn进行集成学习——实践

    转:http://www.cnblogs.com/jasonfreak/p/5720137.html 目录 1 Random Forest和Gradient Tree Boosting参数详解2 如何 ...

  6. ML神器:sklearn的快速使用

    传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都 ...

  7. sklearn.neighbors.kneighbors_graph的简单属性介绍

    connectivity = kneighbors_graph(data, n_neighbors=7, mode='distance', metric='minkowski', p=2, inclu ...

  8. 深入浅出KNN算法(二) sklearn KNN实践

    姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnK ...

  9. 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

    项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...

  10. 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

随机推荐

  1. 云计算与大数据实验:Hbase shell操作用户表

    [实验目的] 1)了解hbase服务 2)学会hbase shell命令操作用户表 [实验原理] HBase是一个分布式的.面向列的开源数据库,它利用Hadoop HDFS作为其文件存储系统,利用Ha ...

  2. 详解Linux系统中10个最危险的命令

    概述 大多数的朋友都是主要用的windows系统,基本用鼠标就可以完成所有的操作,但是在Linux系统中很多都是键盘+命令操作电脑的,Linux命令行使用很有趣,但有时候也很危险,尤其是在你不确定你自 ...

  3. metasploit 一款开源的渗透测试框架

    渗透神器漏洞利用框架metasploit from: https://zhuanlan.zhihu.com/p/30743401 metasploit是一款开源的渗透测试框架软件也是一个逐步发展与成熟 ...

  4. Kotlin高阶函数与函数式编程详解

    函数可变参数: 在上一次https://www.cnblogs.com/webor2006/p/11518425.html中学到了可变参考,关于可变参数有如下规则说明: “一个方法中,只允许一个参数为 ...

  5. 动态生成16位不重复随机数、随机创建2位ID

    /** 1. * 动态生成16位不重复随机数 * * @return */ public synchronized static String generate16() { StringBuffer ...

  6. 项目Alpha冲刺 8

    作业描述 课程: 软件工程1916|W(福州大学) 作业要求: 项目Alpha冲刺(团队) 团队名称: 火鸡堂 作业目标: 介绍第8天冲刺的项目进展.问题困难和心得体会 1.团队信息 队名:火鸡堂 队 ...

  7. PS——使用切片工具切出透明图片

    前言 最近有点烦,不说话~ 步骤 首先要保证您的格式为PSD且底色为透明 参考线 标出参考线,方便后面划分 切图 保存 效果

  8. Asia Jakarta Regional Contest 2019 I - Mission Possible

    cf的地址 因为校强, "咕咕十段"队获得了EC-final的参赛资格 因为我弱, "咕咕十段"队现在银面很大 于是咕咕十段决定进行训练. 周末vp了一场, 这 ...

  9. RSDS pdb格式

    本描述了“RSDS”或“DS”类型的pdb(程序数据库)文件的格式,这些文件是由Miscrosoft的link.exe从版本7及更高版本发出的. 什么是PDB文件? 如果选择了/DEBUG选项或/DE ...

  10. 又一款dump文件观察工具---MiniDumpView

    简介 MiniDumpView实用程序可用于显示minidump中数据流的内容.特别是,可以显示以下信息: 操作系统和CPU信息 进程信息(进程ID和时间) 模块列表(包含每个模块的详细信息) 线程列 ...