python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

auto-sklearn官网

https://automl.github.io/auto-sklearn/master/installation.html

https://automl.github.io/auto-sklearn/master/

auto-sklearn

auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator:

import autosklearn.classification
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X_train, y_train)
predictions = cls.predict(X_test)

  

auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimizationmeta-learning and ensemble construction. Learn more about the technology behind auto-sklearn by reading our paper published at NIPS 2015 .

Example

import autosklearn.classification
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics
X, y = sklearn.datasets.load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)
automl = autosklearn.classification.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))

  

This will run for one hour and should result in an accuracy above 0.98.

License

auto-sklearn is licensed the same way as scikit-learn, namely the 3-clause BSD license.

Citing auto-sklearn

If you use auto-sklearn in a scientific publication, we would appreciate a reference to the following paper:

Efficient and Robust Automated Machine Learning, Feurer et al., Advances in Neural Information Processing Systems 28 (NIPS 2015).

Bibtex entry:

@incollection{NIPS2015_5872,
title = {Efficient and Robust Automated Machine Learning},
author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and
Springenberg, Jost and Blum, Manuel and Hutter, Frank},
booktitle = {Advances in Neural Information Processing Systems 28},
editor = {C. Cortes and N. D. Lawrence and D. D. Lee and M. Sugiyama and R. Garnett},
pages = {2962--2970},
year = {2015},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf}
}

Contributing

We appreciate all contribution to auto-sklearn, from bug reports and documentation to new features. If you want to contribute to the code, you can pick an issue from the issue tracker which is marked with Needs contributer.

Note

To avoid spending time on duplicate work or features that are unlikely to get merged, it is highly advised that you contact the developers by opening a github issue before starting to work.

When developing new features, please create a new branch from the development branch. When to submitting a pull request, make sure that all tests are still passing.

auto-sklearn安装官网(不支持Windows系统)

https://automl.github.io/auto-sklearn/master/installation.html

Installation

System requirements

auto-sklearn has the following system requirements:

For an explanation of missing Microsoft Windows and MAC OSX support please check the Section Windows/OSX compatibility.

Installing auto-sklearn

Please install all dependencies manually with:

curl https://raw.githubusercontent.com/automl/auto-sklearn/master/requirements.txt | xargs -n 1 -L 1 pip install

Then install auto-sklearn:

pip install auto-sklearn

We recommend installing auto-sklearn into a virtual environment or an Anaconda environment.

If the pip installation command fails, make sure you have the System requirements installed correctly.

Ubuntu installation

To provide a C++11 building environment and the lateste SWIG version on Ubuntu, run:

sudo apt-get install build-essential swig

Anaconda installation

Anaconda does not ship auto-sklearn, and there are no conda packages for auto-sklearn. Thus, it is easiest to install auto-sklearn as detailed in the Section Installing auto-sklearn.

A common installation problem under recent Linux distribution is the incompatibility of the compiler version used to compile the Python binary shipped by AnaConda and the compiler installed by the distribution. This can be solved by installing the gcc compiler shipped with AnaConda (as well as swig):

conda install gxx_linux-64 gcc_linux-64 swig

Windows/OSX compatibility

Windows

auto-sklearn relies heavily on the Python module resourceresource is part of Python’s Unix Specific Services and not available on a Windows machine. Therefore, it is not possible to run auto-sklearn on a Windows machine.

Possible solutions (not tested):

  • Windows 10 bash shell

  • virtual machine

  • docker image

Mac OSX

We currently do not know if auto-sklearn works on OSX. There are at least two issues holding us back from actively supporting OSX:

  • The resource module cannot enforce a memory limit on a Python process (see SMAC3/issues/115).

  • OSX machines on travis-ci take more than 30 minutes to spawn. This makes it impossible for us to run unit tests forauto-sklearn and its dependencies SMAC3 and ConfigSpace.

In case you’re having issues installing the pyrfr package, check out this installation suggestion on github.

Possible other solutions (not tested):

  • virtual machine

  • docker image

python信用评分卡建模(附代码,博主录制)

auto-sklearn的更多相关文章

  1. 机器学习之sklearn——聚类

    生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征 ...

  2. 使用sklearn进行集成学习——实践

    系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...

  3. 谁动了我的特征?——sklearn特征转换行为全记录

    目录 1 为什么要记录特征转换行为?2 有哪些特征转换的方式?3 特征转换的组合4 sklearn源码分析 4.1 一对一映射 4.2 一对多映射 4.3 多对多映射5 实践6 总结7 参考资料 1 ...

  4. sklearn两种保存模型的方式

    作者:卢嘉颖 链接:https://www.zhihu.com/question/27187105/answer/97334347 来源:知乎 著作权归作者所有,转载请联系作者获得授权. 1. pic ...

  5. [转]使用sklearn进行集成学习——实践

    转:http://www.cnblogs.com/jasonfreak/p/5720137.html 目录 1 Random Forest和Gradient Tree Boosting参数详解2 如何 ...

  6. ML神器:sklearn的快速使用

    传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都 ...

  7. sklearn.neighbors.kneighbors_graph的简单属性介绍

    connectivity = kneighbors_graph(data, n_neighbors=7, mode='distance', metric='minkowski', p=2, inclu ...

  8. 深入浅出KNN算法(二) sklearn KNN实践

    姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnK ...

  9. 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

    项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...

  10. 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

随机推荐

  1. Jmeter配置元件

    1.CSV Data Set Config Filename   参数化文件的路径 文件中的数据最后一行不能有空行,空行会被当做一个参数 若要进行分布式压测,可以将参数化文件放在jmeter的bin目 ...

  2. dedeCMS 两个站共用同一个数据库 图片路径统一

    1 .  在 /include/extend.fun.php 中增加方法: function replaceurl($newurl){ $newurl=str_replace('src="/ ...

  3. QuickStart系列:docker部署之Gitlab本地代码仓库

    gitlab是可以在本地搭建的使用git作为源代码管理的仓库. 运行环境: win10+vmware14+docker7+docker 1. 使用命令拉取镜像(非必须,耗时比较久,这里以ce为准,ce ...

  4. 【Java字节码】Idea中查看Java字节码的插件jclasslib Bytecode viewer

    Idea插件搜索:jclasslib Bytecode viewer 安装完后,maven install你的项目(因为该插件会读取target下的class文件),然后选中某个java文件,按下图操 ...

  5. R语言包在linux上的安装等知识

    有关install.packages()函数的详见:R包 package 的安装(install.packages函数详解) R的包(package)通常有两种:1 binary package:这种 ...

  6. 数据库开发-Django ORM的数据库迁移

    数据库开发-Django ORM的数据库迁移 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一. Django 项目准备 1>.安装django包 pip install d ...

  7. Python语言防坑小技巧

    Python语言防坑小技巧 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.赋值即定义  1>.运行以下代码会出现报错 #!/usr/bin/env python #_*_ ...

  8. Codeforces Round #574 (Div. 2)题解

    比赛链接 传送门 A题 题意 \(n\)个人每个人都有自己喜欢喝的\(vechorka\)口味,现在给你\(\lceil n/2\rceil\)箱\(vechorka\),每箱有两瓶,问最多能有多少个 ...

  9. Android init介绍(上)

    1. 介绍 init进程是Linux系统第一个用户进程,是Android系统应用程序的根进程,即1号进程(PID为1):Android中的init文件位于/init,代码位于system/core/i ...

  10. nginx设置反向代理,获取真实客户端ip

    upstream这个模块提供一个简单方法来实现在轮询和客户端IP之间的后端服务器负荷平衡. upstream abc.com { server 127.0.0.1:8080; server 127.0 ...