Lomsat gelral

一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和)。

\(n \le 10^5\)

题解

dsu on tree模板题。

暴力做法其实很简单,就是枚举这个点,然后扫一遍子树得到答案,然后清空cnt数组。

我们会发现它做了一些无用功,比如说最后一次清空,其实可以用于他的父节点,这样父节点就可以少算一个子节点。

我们想让尽量大的子树不擦除,那么就树剖剖出重儿子,重儿子不擦除就可以了。

这样一个点会被祖先统计到当且仅当它在轻儿子子树中,所以一个点被统计不超过\(O(\log n)\)次。总时间复杂度\(O(n\log n)\)。

#include<bits/stdc++.h>
#define co const
#define il inline
template<class T> T read(){
T x=0,w=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*w;
}
template<class T>il T read(T&x){
return x=read<T>();
}
using namespace std;
typedef long long LL; co int N=100001;
int n,val[N];
vector<int> e[N]; int fa[N],siz[N],son[N]; void dfs1(int x,int fa){
siz[x]=1;
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa) continue;
::fa[y]=x;
dfs1(y,x);
siz[x]+=siz[y];
if(siz[y]>siz[son[x]]) son[x]=y;
}
} LL ans[N];
int cnt[N],vis[N];
int maxc;LL sum; void change(int x,int d){
cnt[val[x]]+=d;
if(d>0&&cnt[val[x]]>=maxc){
if(cnt[val[x]]>maxc) sum=0,maxc=cnt[val[x]];
sum+=val[x];
}
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa[x]||vis[y]) continue;
change(y,d);
}
}
void dfs2(int x,int use){
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa[x]||y==son[x]) continue;
dfs2(y,0);
}
if(son[x]) dfs2(son[x],1),vis[son[x]]=1;
change(x,1),ans[x]=sum;
if(son[x]) vis[son[x]]=0;
if(!use) change(x,-1),maxc=sum=0;
} int main(){
read(n);
for(int i=1;i<=n;++i) read(val[i]);
for(int i=1,x,y;i<n;++i){
read(x),read(y);
e[x].push_back(y),e[y].push_back(x);
}
dfs1(1,0);
dfs2(1,0);
for(int i=1;i<=n;++i) printf("%lld ",ans[i]);
return 0;
}

Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

一棵以\(1\)号点为根的树,每条边上有一个小写字母\(a\sim v\)。定义一条路经是好的,当且仅当这条路径上经过的所有小写字母重排后可以构成回文串。

求以每个点为根的子树中最长的好的路径。

\(n \le 10^5\)

题解

如果重排后能形成回文串,那么出现奇数次的字符最多有1个。

首先,对于一条字母是\(c\)的边,定义其权值为\(2^c\)。

这样一条路经是好的就当且仅当这条路径的异或和二进制位中的\(1\)的个数不超过\(1\)。

在处理以某一点为根的子树时,开桶,记\(f[i]\)表示到根路径异或和为\(i\)的点的最大深度,可以类似点分的方法计算答案并更新桶。

然后套个dsu on tree,这道题就解决了。时间复杂度\(O(n \log n)\)。

#include<bits/stdc++.h>
#define co const
#define il inline
template<class T> T read(){
T x=0,w=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*w;
}
template<class T>il T read(T&x){
return x=read<T>();
}
using namespace std; co int N=500000+5;
int n,nx[N],to[N],val[N];
int siz[N],son[N],dep[N];
int pos[N],dfn,id[N],lst[N]; void dfs1(int x){
siz[x]=1,id[pos[x]=++dfn]=x;
for(int y=to[x];y;y=nx[y]){
dep[y]=dep[x]+1,val[y]=val[y]^val[x];
dfs1(y);
siz[x]+=siz[y];
if(siz[y]>siz[son[x]]) son[x]=y;
}
lst[x]=dfn;
} int f[1<<22],ans[N]; void dfs2(int x,int use){
for(int y=to[x];y;y=nx[y])
if(y!=son[x]) dfs2(y,0),ans[x]=max(ans[x],ans[y]);
if(son[x]) dfs2(son[x],1),ans[x]=max(ans[x],ans[son[x]]);
// cerr<<x<<" ans="<<ans[x]<<endl;
if(f[val[x]]) ans[x]=max(ans[x],f[val[x]]-dep[x]);
for(int i=0;i<22;++i)if(f[val[x]^(1<<i)])
ans[x]=max(ans[x],f[val[x]^(1<<i)]-dep[x]);
f[val[x]]=max(f[val[x]],dep[x]);
// cerr<<x<<" ans="<<ans[x]<<endl;
for(int y=to[x];y;y=nx[y])if(y!=son[x]){
for(int i=pos[y];i<=lst[y];++i){
int z=id[i];
if(f[val[z]]) ans[x]=max(ans[x],f[val[z]]+dep[z]-(dep[x]<<1));
for(int j=0;j<22;++j)if(f[val[z]^(1<<j)])
ans[x]=max(ans[x],f[val[z]^(1<<j)]+dep[z]-(dep[x]<<1));
}
for(int i=pos[y];i<=lst[y];++i){
int z=id[i];
f[val[z]]=max(f[val[z]],dep[z]);
}
}
// cerr<<x<<" ans="<<ans[x]<<endl;
if(!use) for(int i=pos[x];i<=lst[x];++i) f[val[id[i]]]=0;
} int main(){
read(n);
for(int i=2;i<=n;++i){
int fa=read<int>();char ch=getchar();
nx[i]=to[fa],to[fa]=i,val[i]=1<<(ch-'a');
}
dfs1(1);
dfs2(1,0);
for(int i=1;i<=n;++i) printf("%d ",ans[i]);
return 0;
}

CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths的更多相关文章

  1. CF600E Lomsat gelral 【线段树合并】

    题目链接 CF600E 题解 容易想到就是线段树合并,维护每个权值区间出现的最大值以及最大值位置之和即可 对于每个节点合并一下两个子节点的信息 要注意叶子节点信息的合并和非叶节点信息的合并是不一样的 ...

  2. CF600E Lomsat gelral(dsu on tree)

    dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...

  3. CF600E:Lomsat gelral(线段树合并)

    Description 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. Input 第一行一个$n$.第二行$n$个数字是$c[i]$.后面$n-1$ ...

  4. [CF600E]Lomsat gelral

    题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 线段树合并板子题,没啥难度,注意开long long 不过这题$dsu$ $on$ $tre ...

  5. dsu on tree(CF600E Lomsat gelral)

    题意 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. dsu on tree 用来解决子树问题 好像不能带修改?? 暴力做这个题,就是每次扫一遍子树统 ...

  6. cf600E. Lomsat gelral(dsu on tree)

    题意 题目链接 给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和 Sol dsu on tree的裸题. 一会儿好好总结总结qwq #include<bits/stdc++.h> ...

  7. CF600E Lomsat gelral——线段树合并/dsu on tree

    题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...

  8. CF600E Lomsat gelral (启发式合并)

    You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...

  9. CF600E Lomsat gelral 树上启发式合并

    题目描述 有一棵 \(n\) 个结点的以 \(1\) 号结点为根的有根树. 每个结点都有一个颜色,颜色是以编号表示的, \(i\) 号结点的颜色编号为 \(c_i\)​. 如果一种颜色在以 \(x\) ...

随机推荐

  1. Javaspring+mybit+maven中实现Junit测试类

    在一个Javaspring+mybit+maven框架中,增加Junit测试类. 在测试类中遇到的一些问题,利用spring 框架时,里面已经有保密security+JWT设定的场合,在你的secur ...

  2. web自动化测试笔记(一)

    web自动化测试环境配置(JDK) 使用selenium工具做自动化测试之前,首先要做的准备工作是配置一下web自动化测试的环境. 1.下载jdk http://www.oracle.com/tech ...

  3. 使用SnowFlake算法生成唯一ID

    转自:https://segmentfault.com/a/1190000007769660 考虑过的方法有 直接用时间戳,或者以此衍生的一系列方法 Mysql自带的uuid 以上两种方法都可以查到就 ...

  4. linux命令及相关配置

    hostname # 查看 hostname vim /etc/hostname # 修改hostname,重启后生效 vim /etc/resolv.conf 写入 nameserver 192.1 ...

  5. Selenium自动化获取WebSocket信息

    性能日志 ChromeDriver支持性能日志记录,您可以从中获取域“时间轴”,“网络”和“页面”的事件,以及指定跟踪类别的跟踪数据. 启用性能日志 默认情况下不启用性能日志记录.因此,在创建新会话时 ...

  6. SAS学习笔记61 set和union的区别

    好久没发博客了,水一篇,直接来代码 set的结果如下 union的结果如下

  7. SAS学习笔记60 统计SAS实例之T检验

    单样本 H0:服从正态分布 P=0.0988>0.05不拒绝H0,服从正态分布 H0:等于140t=-2.14,P=0.0397 P<0.05,拒绝H0,差异有统计学意义 均值x=130. ...

  8. STL之 stack的基础应用

    头文件 #include<stack> stack<int>  s; stack<char> s;//定义一个名字为s 的存int char的stack 基本指令 ...

  9. tcp协议close_wait与time_wait状态含义

    题目描述 1.什么是三次握手,四次挥手?为什么分别要三次与四次? 2.tcp协议中,close_wait与time_wait状态分别代表什么含义,为什么要设计这两种状态,解决了什么问题? 3.time ...

  10. 【洛谷 P4248】 [AHOI2013]差异(后缀自动机)

    题目链接 \[ans=\sum_{1<=i<j<=n}len(T_i)+len(T_j)-2*lcp(T_i,T_j)\] 观察这个式子可以发现,前面两个\(len\)是常数,后面的 ...