Lomsat gelral

一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和)。

\(n \le 10^5\)

题解

dsu on tree模板题。

暴力做法其实很简单,就是枚举这个点,然后扫一遍子树得到答案,然后清空cnt数组。

我们会发现它做了一些无用功,比如说最后一次清空,其实可以用于他的父节点,这样父节点就可以少算一个子节点。

我们想让尽量大的子树不擦除,那么就树剖剖出重儿子,重儿子不擦除就可以了。

这样一个点会被祖先统计到当且仅当它在轻儿子子树中,所以一个点被统计不超过\(O(\log n)\)次。总时间复杂度\(O(n\log n)\)。

#include<bits/stdc++.h>
#define co const
#define il inline
template<class T> T read(){
T x=0,w=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*w;
}
template<class T>il T read(T&x){
return x=read<T>();
}
using namespace std;
typedef long long LL; co int N=100001;
int n,val[N];
vector<int> e[N]; int fa[N],siz[N],son[N]; void dfs1(int x,int fa){
siz[x]=1;
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa) continue;
::fa[y]=x;
dfs1(y,x);
siz[x]+=siz[y];
if(siz[y]>siz[son[x]]) son[x]=y;
}
} LL ans[N];
int cnt[N],vis[N];
int maxc;LL sum; void change(int x,int d){
cnt[val[x]]+=d;
if(d>0&&cnt[val[x]]>=maxc){
if(cnt[val[x]]>maxc) sum=0,maxc=cnt[val[x]];
sum+=val[x];
}
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa[x]||vis[y]) continue;
change(y,d);
}
}
void dfs2(int x,int use){
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa[x]||y==son[x]) continue;
dfs2(y,0);
}
if(son[x]) dfs2(son[x],1),vis[son[x]]=1;
change(x,1),ans[x]=sum;
if(son[x]) vis[son[x]]=0;
if(!use) change(x,-1),maxc=sum=0;
} int main(){
read(n);
for(int i=1;i<=n;++i) read(val[i]);
for(int i=1,x,y;i<n;++i){
read(x),read(y);
e[x].push_back(y),e[y].push_back(x);
}
dfs1(1,0);
dfs2(1,0);
for(int i=1;i<=n;++i) printf("%lld ",ans[i]);
return 0;
}

Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

一棵以\(1\)号点为根的树,每条边上有一个小写字母\(a\sim v\)。定义一条路经是好的,当且仅当这条路径上经过的所有小写字母重排后可以构成回文串。

求以每个点为根的子树中最长的好的路径。

\(n \le 10^5\)

题解

如果重排后能形成回文串,那么出现奇数次的字符最多有1个。

首先,对于一条字母是\(c\)的边,定义其权值为\(2^c\)。

这样一条路经是好的就当且仅当这条路径的异或和二进制位中的\(1\)的个数不超过\(1\)。

在处理以某一点为根的子树时,开桶,记\(f[i]\)表示到根路径异或和为\(i\)的点的最大深度,可以类似点分的方法计算答案并更新桶。

然后套个dsu on tree,这道题就解决了。时间复杂度\(O(n \log n)\)。

#include<bits/stdc++.h>
#define co const
#define il inline
template<class T> T read(){
T x=0,w=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*w;
}
template<class T>il T read(T&x){
return x=read<T>();
}
using namespace std; co int N=500000+5;
int n,nx[N],to[N],val[N];
int siz[N],son[N],dep[N];
int pos[N],dfn,id[N],lst[N]; void dfs1(int x){
siz[x]=1,id[pos[x]=++dfn]=x;
for(int y=to[x];y;y=nx[y]){
dep[y]=dep[x]+1,val[y]=val[y]^val[x];
dfs1(y);
siz[x]+=siz[y];
if(siz[y]>siz[son[x]]) son[x]=y;
}
lst[x]=dfn;
} int f[1<<22],ans[N]; void dfs2(int x,int use){
for(int y=to[x];y;y=nx[y])
if(y!=son[x]) dfs2(y,0),ans[x]=max(ans[x],ans[y]);
if(son[x]) dfs2(son[x],1),ans[x]=max(ans[x],ans[son[x]]);
// cerr<<x<<" ans="<<ans[x]<<endl;
if(f[val[x]]) ans[x]=max(ans[x],f[val[x]]-dep[x]);
for(int i=0;i<22;++i)if(f[val[x]^(1<<i)])
ans[x]=max(ans[x],f[val[x]^(1<<i)]-dep[x]);
f[val[x]]=max(f[val[x]],dep[x]);
// cerr<<x<<" ans="<<ans[x]<<endl;
for(int y=to[x];y;y=nx[y])if(y!=son[x]){
for(int i=pos[y];i<=lst[y];++i){
int z=id[i];
if(f[val[z]]) ans[x]=max(ans[x],f[val[z]]+dep[z]-(dep[x]<<1));
for(int j=0;j<22;++j)if(f[val[z]^(1<<j)])
ans[x]=max(ans[x],f[val[z]^(1<<j)]+dep[z]-(dep[x]<<1));
}
for(int i=pos[y];i<=lst[y];++i){
int z=id[i];
f[val[z]]=max(f[val[z]],dep[z]);
}
}
// cerr<<x<<" ans="<<ans[x]<<endl;
if(!use) for(int i=pos[x];i<=lst[x];++i) f[val[id[i]]]=0;
} int main(){
read(n);
for(int i=2;i<=n;++i){
int fa=read<int>();char ch=getchar();
nx[i]=to[fa],to[fa]=i,val[i]=1<<(ch-'a');
}
dfs1(1);
dfs2(1,0);
for(int i=1;i<=n;++i) printf("%d ",ans[i]);
return 0;
}

CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths的更多相关文章

  1. CF600E Lomsat gelral 【线段树合并】

    题目链接 CF600E 题解 容易想到就是线段树合并,维护每个权值区间出现的最大值以及最大值位置之和即可 对于每个节点合并一下两个子节点的信息 要注意叶子节点信息的合并和非叶节点信息的合并是不一样的 ...

  2. CF600E Lomsat gelral(dsu on tree)

    dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...

  3. CF600E:Lomsat gelral(线段树合并)

    Description 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. Input 第一行一个$n$.第二行$n$个数字是$c[i]$.后面$n-1$ ...

  4. [CF600E]Lomsat gelral

    题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 线段树合并板子题,没啥难度,注意开long long 不过这题$dsu$ $on$ $tre ...

  5. dsu on tree(CF600E Lomsat gelral)

    题意 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. dsu on tree 用来解决子树问题 好像不能带修改?? 暴力做这个题,就是每次扫一遍子树统 ...

  6. cf600E. Lomsat gelral(dsu on tree)

    题意 题目链接 给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和 Sol dsu on tree的裸题. 一会儿好好总结总结qwq #include<bits/stdc++.h> ...

  7. CF600E Lomsat gelral——线段树合并/dsu on tree

    题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...

  8. CF600E Lomsat gelral (启发式合并)

    You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...

  9. CF600E Lomsat gelral 树上启发式合并

    题目描述 有一棵 \(n\) 个结点的以 \(1\) 号结点为根的有根树. 每个结点都有一个颜色,颜色是以编号表示的, \(i\) 号结点的颜色编号为 \(c_i\)​. 如果一种颜色在以 \(x\) ...

随机推荐

  1. 利用js来画图形(例如:条状图,圆饼图等)

    背景:java开发的过程中,需要对数据进行可视化,这样方便客户理解此时的数据状态 语言:java,js,window7,echarts包文件 sample的例子下面的参照 https://www.ec ...

  2. SecureCRT字体、界面优化

    SecureCRT字体.界面优化 本文是secureCRT的第三篇博文,也是目前secureCRT优化的最终篇.首次使用该软件时候.应该会设置字体和编码,接下来,将演示如何设置. 1. 字体.编码设置 ...

  3. MySQL权限管理常用命令

    1.进入mysql命令行. (1)SSH连接:mysql -u root -p输入root密码 (2)Navicat for MySQL中:右击连接,选择“命令列界面..” 2.mysql环境操作 ( ...

  4. 2.RabbitMQ 的可靠性消息的发送

      本篇包含 1. RabbitMQ 的可靠性消息的发送 2. RabbitMQ 集群的原理与高可用架构的搭建 3. RabbitMQ 的实践经验   上篇包含 1.MQ 的本质,MQ 的作用 2.R ...

  5. poj 1095 题解(卡特兰数+递归

    题目 题意:给出一个二叉树的编号,问形态. 编号依据 1:如果二叉树为空,则编号为0: 2:如果二叉树只有一个节点,则编号为1: 3:所有含有m个节点的二叉树的编号小于所有含有m+1个节点的二叉树的编 ...

  6. 用Python递归做个多层次的文件执行

    想用 递归实现多层次的 '.py'执行但是发现好像不能 import os def func(path): if os.path.isdir(path): for name in os.listdir ...

  7. AVR单片机教程——按键动作

    上一篇教程中我们学习了如何读取按键状态.而按键的动作,比如单击,至少需要两个状态才能判定,长按.双击的判定更加复杂.今天我们来学习如何使用库函数判断按键单击,以及其实现原理. 我们要实现的是:当一个按 ...

  8. JXOI2018

    发现自己不会T3可以退群了 排序问题(组合.模拟) 可以发现Gobo Sort相当于在所有排列中随机选择一个,所以当第\(i\)个数出现次数为\(a_i\)时,期望的Sort次数就是\(\frac{( ...

  9. CAS 5.x搭建常见问题系列(1).未认证的授权服务

    错误内容 错误信息如下: 未认证授权的服务 CAS的服务记录是空的,没有定义服务.希望通过CAS进行认证的应用程序必须在服务记录中明确定义 错误原因 CAS 5.x 默认情况下不支持HTTP的客户端接 ...

  10. NetCore踩坑记1、 一块网卡引发的血案

    公司的项目架构演进,我们也趁机尝试迁移到netcore,系列随笔讲记录我们的踩坑和填坑记录. HttpClient不行? 这是我们第一次尝试netcore 简要介绍环境 netcore2.2+aspn ...