CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths
Lomsat gelral
一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和)。
\(n \le 10^5\)
题解
dsu on tree模板题。
暴力做法其实很简单,就是枚举这个点,然后扫一遍子树得到答案,然后清空cnt数组。
我们会发现它做了一些无用功,比如说最后一次清空,其实可以用于他的父节点,这样父节点就可以少算一个子节点。
我们想让尽量大的子树不擦除,那么就树剖剖出重儿子,重儿子不擦除就可以了。
这样一个点会被祖先统计到当且仅当它在轻儿子子树中,所以一个点被统计不超过\(O(\log n)\)次。总时间复杂度\(O(n\log n)\)。
#include<bits/stdc++.h>
#define co const
#define il inline
template<class T> T read(){
T x=0,w=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*w;
}
template<class T>il T read(T&x){
return x=read<T>();
}
using namespace std;
typedef long long LL;
co int N=100001;
int n,val[N];
vector<int> e[N];
int fa[N],siz[N],son[N];
void dfs1(int x,int fa){
siz[x]=1;
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa) continue;
::fa[y]=x;
dfs1(y,x);
siz[x]+=siz[y];
if(siz[y]>siz[son[x]]) son[x]=y;
}
}
LL ans[N];
int cnt[N],vis[N];
int maxc;LL sum;
void change(int x,int d){
cnt[val[x]]+=d;
if(d>0&&cnt[val[x]]>=maxc){
if(cnt[val[x]]>maxc) sum=0,maxc=cnt[val[x]];
sum+=val[x];
}
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa[x]||vis[y]) continue;
change(y,d);
}
}
void dfs2(int x,int use){
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa[x]||y==son[x]) continue;
dfs2(y,0);
}
if(son[x]) dfs2(son[x],1),vis[son[x]]=1;
change(x,1),ans[x]=sum;
if(son[x]) vis[son[x]]=0;
if(!use) change(x,-1),maxc=sum=0;
}
int main(){
read(n);
for(int i=1;i<=n;++i) read(val[i]);
for(int i=1,x,y;i<n;++i){
read(x),read(y);
e[x].push_back(y),e[y].push_back(x);
}
dfs1(1,0);
dfs2(1,0);
for(int i=1;i<=n;++i) printf("%lld ",ans[i]);
return 0;
}
Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths
一棵以\(1\)号点为根的树,每条边上有一个小写字母\(a\sim v\)。定义一条路经是好的,当且仅当这条路径上经过的所有小写字母重排后可以构成回文串。
求以每个点为根的子树中最长的好的路径。
\(n \le 10^5\)
题解
如果重排后能形成回文串,那么出现奇数次的字符最多有1个。
首先,对于一条字母是\(c\)的边,定义其权值为\(2^c\)。
这样一条路经是好的就当且仅当这条路径的异或和二进制位中的\(1\)的个数不超过\(1\)。
在处理以某一点为根的子树时,开桶,记\(f[i]\)表示到根路径异或和为\(i\)的点的最大深度,可以类似点分的方法计算答案并更新桶。
然后套个dsu on tree,这道题就解决了。时间复杂度\(O(n \log n)\)。
#include<bits/stdc++.h>
#define co const
#define il inline
template<class T> T read(){
T x=0,w=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*w;
}
template<class T>il T read(T&x){
return x=read<T>();
}
using namespace std;
co int N=500000+5;
int n,nx[N],to[N],val[N];
int siz[N],son[N],dep[N];
int pos[N],dfn,id[N],lst[N];
void dfs1(int x){
siz[x]=1,id[pos[x]=++dfn]=x;
for(int y=to[x];y;y=nx[y]){
dep[y]=dep[x]+1,val[y]=val[y]^val[x];
dfs1(y);
siz[x]+=siz[y];
if(siz[y]>siz[son[x]]) son[x]=y;
}
lst[x]=dfn;
}
int f[1<<22],ans[N];
void dfs2(int x,int use){
for(int y=to[x];y;y=nx[y])
if(y!=son[x]) dfs2(y,0),ans[x]=max(ans[x],ans[y]);
if(son[x]) dfs2(son[x],1),ans[x]=max(ans[x],ans[son[x]]);
// cerr<<x<<" ans="<<ans[x]<<endl;
if(f[val[x]]) ans[x]=max(ans[x],f[val[x]]-dep[x]);
for(int i=0;i<22;++i)if(f[val[x]^(1<<i)])
ans[x]=max(ans[x],f[val[x]^(1<<i)]-dep[x]);
f[val[x]]=max(f[val[x]],dep[x]);
// cerr<<x<<" ans="<<ans[x]<<endl;
for(int y=to[x];y;y=nx[y])if(y!=son[x]){
for(int i=pos[y];i<=lst[y];++i){
int z=id[i];
if(f[val[z]]) ans[x]=max(ans[x],f[val[z]]+dep[z]-(dep[x]<<1));
for(int j=0;j<22;++j)if(f[val[z]^(1<<j)])
ans[x]=max(ans[x],f[val[z]^(1<<j)]+dep[z]-(dep[x]<<1));
}
for(int i=pos[y];i<=lst[y];++i){
int z=id[i];
f[val[z]]=max(f[val[z]],dep[z]);
}
}
// cerr<<x<<" ans="<<ans[x]<<endl;
if(!use) for(int i=pos[x];i<=lst[x];++i) f[val[id[i]]]=0;
}
int main(){
read(n);
for(int i=2;i<=n;++i){
int fa=read<int>();char ch=getchar();
nx[i]=to[fa],to[fa]=i,val[i]=1<<(ch-'a');
}
dfs1(1);
dfs2(1,0);
for(int i=1;i<=n;++i) printf("%d ",ans[i]);
return 0;
}
CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths的更多相关文章
- CF600E Lomsat gelral 【线段树合并】
题目链接 CF600E 题解 容易想到就是线段树合并,维护每个权值区间出现的最大值以及最大值位置之和即可 对于每个节点合并一下两个子节点的信息 要注意叶子节点信息的合并和非叶节点信息的合并是不一样的 ...
- CF600E Lomsat gelral(dsu on tree)
dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...
- CF600E:Lomsat gelral(线段树合并)
Description 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. Input 第一行一个$n$.第二行$n$个数字是$c[i]$.后面$n-1$ ...
- [CF600E]Lomsat gelral
题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 线段树合并板子题,没啥难度,注意开long long 不过这题$dsu$ $on$ $tre ...
- dsu on tree(CF600E Lomsat gelral)
题意 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. dsu on tree 用来解决子树问题 好像不能带修改?? 暴力做这个题,就是每次扫一遍子树统 ...
- cf600E. Lomsat gelral(dsu on tree)
题意 题目链接 给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和 Sol dsu on tree的裸题. 一会儿好好总结总结qwq #include<bits/stdc++.h> ...
- CF600E Lomsat gelral——线段树合并/dsu on tree
题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...
- CF600E Lomsat gelral (启发式合并)
You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...
- CF600E Lomsat gelral 树上启发式合并
题目描述 有一棵 \(n\) 个结点的以 \(1\) 号结点为根的有根树. 每个结点都有一个颜色,颜色是以编号表示的, \(i\) 号结点的颜色编号为 \(c_i\). 如果一种颜色在以 \(x\) ...
随机推荐
- 利用js来画图形(例如:条状图,圆饼图等)
背景:java开发的过程中,需要对数据进行可视化,这样方便客户理解此时的数据状态 语言:java,js,window7,echarts包文件 sample的例子下面的参照 https://www.ec ...
- SecureCRT字体、界面优化
SecureCRT字体.界面优化 本文是secureCRT的第三篇博文,也是目前secureCRT优化的最终篇.首次使用该软件时候.应该会设置字体和编码,接下来,将演示如何设置. 1. 字体.编码设置 ...
- MySQL权限管理常用命令
1.进入mysql命令行. (1)SSH连接:mysql -u root -p输入root密码 (2)Navicat for MySQL中:右击连接,选择“命令列界面..” 2.mysql环境操作 ( ...
- 2.RabbitMQ 的可靠性消息的发送
本篇包含 1. RabbitMQ 的可靠性消息的发送 2. RabbitMQ 集群的原理与高可用架构的搭建 3. RabbitMQ 的实践经验 上篇包含 1.MQ 的本质,MQ 的作用 2.R ...
- poj 1095 题解(卡特兰数+递归
题目 题意:给出一个二叉树的编号,问形态. 编号依据 1:如果二叉树为空,则编号为0: 2:如果二叉树只有一个节点,则编号为1: 3:所有含有m个节点的二叉树的编号小于所有含有m+1个节点的二叉树的编 ...
- 用Python递归做个多层次的文件执行
想用 递归实现多层次的 '.py'执行但是发现好像不能 import os def func(path): if os.path.isdir(path): for name in os.listdir ...
- AVR单片机教程——按键动作
上一篇教程中我们学习了如何读取按键状态.而按键的动作,比如单击,至少需要两个状态才能判定,长按.双击的判定更加复杂.今天我们来学习如何使用库函数判断按键单击,以及其实现原理. 我们要实现的是:当一个按 ...
- JXOI2018
发现自己不会T3可以退群了 排序问题(组合.模拟) 可以发现Gobo Sort相当于在所有排列中随机选择一个,所以当第\(i\)个数出现次数为\(a_i\)时,期望的Sort次数就是\(\frac{( ...
- CAS 5.x搭建常见问题系列(1).未认证的授权服务
错误内容 错误信息如下: 未认证授权的服务 CAS的服务记录是空的,没有定义服务.希望通过CAS进行认证的应用程序必须在服务记录中明确定义 错误原因 CAS 5.x 默认情况下不支持HTTP的客户端接 ...
- NetCore踩坑记1、 一块网卡引发的血案
公司的项目架构演进,我们也趁机尝试迁移到netcore,系列随笔讲记录我们的踩坑和填坑记录. HttpClient不行? 这是我们第一次尝试netcore 简要介绍环境 netcore2.2+aspn ...