Lomsat gelral

一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和)。

\(n \le 10^5\)

题解

dsu on tree模板题。

暴力做法其实很简单,就是枚举这个点,然后扫一遍子树得到答案,然后清空cnt数组。

我们会发现它做了一些无用功,比如说最后一次清空,其实可以用于他的父节点,这样父节点就可以少算一个子节点。

我们想让尽量大的子树不擦除,那么就树剖剖出重儿子,重儿子不擦除就可以了。

这样一个点会被祖先统计到当且仅当它在轻儿子子树中,所以一个点被统计不超过\(O(\log n)\)次。总时间复杂度\(O(n\log n)\)。

#include<bits/stdc++.h>
#define co const
#define il inline
template<class T> T read(){
T x=0,w=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*w;
}
template<class T>il T read(T&x){
return x=read<T>();
}
using namespace std;
typedef long long LL; co int N=100001;
int n,val[N];
vector<int> e[N]; int fa[N],siz[N],son[N]; void dfs1(int x,int fa){
siz[x]=1;
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa) continue;
::fa[y]=x;
dfs1(y,x);
siz[x]+=siz[y];
if(siz[y]>siz[son[x]]) son[x]=y;
}
} LL ans[N];
int cnt[N],vis[N];
int maxc;LL sum; void change(int x,int d){
cnt[val[x]]+=d;
if(d>0&&cnt[val[x]]>=maxc){
if(cnt[val[x]]>maxc) sum=0,maxc=cnt[val[x]];
sum+=val[x];
}
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa[x]||vis[y]) continue;
change(y,d);
}
}
void dfs2(int x,int use){
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(y==fa[x]||y==son[x]) continue;
dfs2(y,0);
}
if(son[x]) dfs2(son[x],1),vis[son[x]]=1;
change(x,1),ans[x]=sum;
if(son[x]) vis[son[x]]=0;
if(!use) change(x,-1),maxc=sum=0;
} int main(){
read(n);
for(int i=1;i<=n;++i) read(val[i]);
for(int i=1,x,y;i<n;++i){
read(x),read(y);
e[x].push_back(y),e[y].push_back(x);
}
dfs1(1,0);
dfs2(1,0);
for(int i=1;i<=n;++i) printf("%lld ",ans[i]);
return 0;
}

Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

一棵以\(1\)号点为根的树,每条边上有一个小写字母\(a\sim v\)。定义一条路经是好的,当且仅当这条路径上经过的所有小写字母重排后可以构成回文串。

求以每个点为根的子树中最长的好的路径。

\(n \le 10^5\)

题解

如果重排后能形成回文串,那么出现奇数次的字符最多有1个。

首先,对于一条字母是\(c\)的边,定义其权值为\(2^c\)。

这样一条路经是好的就当且仅当这条路径的异或和二进制位中的\(1\)的个数不超过\(1\)。

在处理以某一点为根的子树时,开桶,记\(f[i]\)表示到根路径异或和为\(i\)的点的最大深度,可以类似点分的方法计算答案并更新桶。

然后套个dsu on tree,这道题就解决了。时间复杂度\(O(n \log n)\)。

#include<bits/stdc++.h>
#define co const
#define il inline
template<class T> T read(){
T x=0,w=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*w;
}
template<class T>il T read(T&x){
return x=read<T>();
}
using namespace std; co int N=500000+5;
int n,nx[N],to[N],val[N];
int siz[N],son[N],dep[N];
int pos[N],dfn,id[N],lst[N]; void dfs1(int x){
siz[x]=1,id[pos[x]=++dfn]=x;
for(int y=to[x];y;y=nx[y]){
dep[y]=dep[x]+1,val[y]=val[y]^val[x];
dfs1(y);
siz[x]+=siz[y];
if(siz[y]>siz[son[x]]) son[x]=y;
}
lst[x]=dfn;
} int f[1<<22],ans[N]; void dfs2(int x,int use){
for(int y=to[x];y;y=nx[y])
if(y!=son[x]) dfs2(y,0),ans[x]=max(ans[x],ans[y]);
if(son[x]) dfs2(son[x],1),ans[x]=max(ans[x],ans[son[x]]);
// cerr<<x<<" ans="<<ans[x]<<endl;
if(f[val[x]]) ans[x]=max(ans[x],f[val[x]]-dep[x]);
for(int i=0;i<22;++i)if(f[val[x]^(1<<i)])
ans[x]=max(ans[x],f[val[x]^(1<<i)]-dep[x]);
f[val[x]]=max(f[val[x]],dep[x]);
// cerr<<x<<" ans="<<ans[x]<<endl;
for(int y=to[x];y;y=nx[y])if(y!=son[x]){
for(int i=pos[y];i<=lst[y];++i){
int z=id[i];
if(f[val[z]]) ans[x]=max(ans[x],f[val[z]]+dep[z]-(dep[x]<<1));
for(int j=0;j<22;++j)if(f[val[z]^(1<<j)])
ans[x]=max(ans[x],f[val[z]^(1<<j)]+dep[z]-(dep[x]<<1));
}
for(int i=pos[y];i<=lst[y];++i){
int z=id[i];
f[val[z]]=max(f[val[z]],dep[z]);
}
}
// cerr<<x<<" ans="<<ans[x]<<endl;
if(!use) for(int i=pos[x];i<=lst[x];++i) f[val[id[i]]]=0;
} int main(){
read(n);
for(int i=2;i<=n;++i){
int fa=read<int>();char ch=getchar();
nx[i]=to[fa],to[fa]=i,val[i]=1<<(ch-'a');
}
dfs1(1);
dfs2(1,0);
for(int i=1;i<=n;++i) printf("%d ",ans[i]);
return 0;
}

CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths的更多相关文章

  1. CF600E Lomsat gelral 【线段树合并】

    题目链接 CF600E 题解 容易想到就是线段树合并,维护每个权值区间出现的最大值以及最大值位置之和即可 对于每个节点合并一下两个子节点的信息 要注意叶子节点信息的合并和非叶节点信息的合并是不一样的 ...

  2. CF600E Lomsat gelral(dsu on tree)

    dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...

  3. CF600E:Lomsat gelral(线段树合并)

    Description 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. Input 第一行一个$n$.第二行$n$个数字是$c[i]$.后面$n-1$ ...

  4. [CF600E]Lomsat gelral

    题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 线段树合并板子题,没啥难度,注意开long long 不过这题$dsu$ $on$ $tre ...

  5. dsu on tree(CF600E Lomsat gelral)

    题意 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. dsu on tree 用来解决子树问题 好像不能带修改?? 暴力做这个题,就是每次扫一遍子树统 ...

  6. cf600E. Lomsat gelral(dsu on tree)

    题意 题目链接 给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和 Sol dsu on tree的裸题. 一会儿好好总结总结qwq #include<bits/stdc++.h> ...

  7. CF600E Lomsat gelral——线段树合并/dsu on tree

    题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...

  8. CF600E Lomsat gelral (启发式合并)

    You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...

  9. CF600E Lomsat gelral 树上启发式合并

    题目描述 有一棵 \(n\) 个结点的以 \(1\) 号结点为根的有根树. 每个结点都有一个颜色,颜色是以编号表示的, \(i\) 号结点的颜色编号为 \(c_i\)​. 如果一种颜色在以 \(x\) ...

随机推荐

  1. 最新 途牛java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.途牛等10家互联网公司的校招Offer,因为某些自身原因最终选择了途牛.6.7月主要是做系统复习.项目复盘.LeetCode ...

  2. (生鲜项目)03. xadmin的配置

    步骤1. 下载xadmin源码(git_hub上的源码已经不支持py3了,需要从其它老手那里获取),将本文件夹全部放置于合适的目录下(这里放到extra_apps内)2. 在settings的INST ...

  3. kafka示例

    1. 引入依赖 <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-c ...

  4. 对JAVA工程师绝对有用的Java学习资源清单

    学习Java和其他技术的资源其实非常多,但也不是都是好的有用的,我们要取其精华去其糟粕,选择那些最好的,最适合我们的,同时也要由浅入深,先易后难.基于这样的一个标准,我在这里为大家提供一份Java的学 ...

  5. macbook下使用pycharm2019版本配置远程连接服务器

    pycharm提供了很方便的与服务器同步代码,并执行的插件.我在配置windows版的pycharm时配置成功,在挪用到mac上则遇到了些许问题,终于是解决了,在此记录配置的过程 目的:pycharm ...

  6. 最详细的Android SDK下载安装及配置教程

    文章转载与:https://blog.csdn.net/dr_neo/article/details/49870587 最近Neo突发神经,想要将学过的一些计算机视觉.机器学习中的算法都放到移动设备上 ...

  7. zookerper入门、核心概念和使用场景

    zookeeper是一个分布式程序的高性能协调服务,提供集中式信息存储服务,数据存储于内存中,类似文件系统的树形结构,高吞吐量和低延时,集群高可靠,基于zookeeper可以实现分布式统一配置中心.分 ...

  8. 解决Windows10关闭UAC后,开机启动项不生效的问题

    Windows10关闭UAC后,会发现启动项不生效. 运行输入gpedit.msc打开组策略(家庭版没有组策略功能) 依次展开计算机配置->Windows设置->安全设置->本地策略 ...

  9. Python之模型的保存和加载-5.3

    一.模型的保存,主要是我们在训练完成的时候把训练下来的数据保存下来,这个也就是我们后续需要使用的模型算法.模型的加载,在保存好的模型上面我们通过原生保存好的模型,去计算新的数据,这样不用每次都要去训练 ...

  10. java之hibernate之配置讲解

    1.映射文件:User.hbm.xml <!-- package 指向class中所有类的包名,可以直接在指定类名时同时指定包名 --> <hibernate-mapping pac ...