链接:

https://vjudge.net/problem/LightOJ-1246

题意:

You are given a rectangular board. You are asked to draw M horizontal lines and N vertical lines in that board, so that the whole board will be divided into (M+1) x (N+1) cells. So, there will be M+1 rows each of which will exactly contain N+1 cells or columns. The yth cell of xth row can be called as cell(x, y). The distance between two cells is the summation of row difference and column difference of those two cells. So, the distance between cell(x1, y1) and cell(x2, y2) is

|x1 - x2| + |y1 - y2|

For example, the distance between cell (2, 3) and cell (3, 2) is |2 - 3| + |3 - 2| = 1 + 1 = 2.

After that you have to color every cell of the board. For that you are given K different colors. To make the board more beautiful you have to make sure that no two cells having the same color can have odd distance between them. For example, if you color cell (3, 5) with red, you cannot color cell (5, 8) with red, as the distance between them is 5, which is odd. Note that you can keep some color unused, but you can't keep some cell uncolored.

You have to determine how many ways to color the board using those K colors.

思路:

将图分为两个部分,任意一个部分的点到另一个部分的任意一个点的距离都是奇数。

这样就转变成了一个DP,Dp[i][j]表示n个位置,放了j种颜色。

Dp[i][j] = Dp[i-1][j-1]j+Dp[i-1][j]j

再用组合数分配一下两个部分的颜色。

代码:

// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10; int n, m, k;
LL Dp[410][55];
LL c[55][55]; void Init()
{
memset(c, 0, sizeof(c));
for (int i = 0;i < 55;i++)
{
c[i][0] = 1;
for (int j = 1;j <= i;j++)
{
c[i][j] = (c[i-1][j-1] + c[i-1][j])%MOD;
}
}
for (int i = 1;i < 410;i++)
{
Dp[i][1] = 1;
for (int j = 2;j < 55;j++)
{
Dp[i][j] = (Dp[i-1][j-1]*j+Dp[i-1][j]*j)%MOD;
}
}
} int main()
{
// freopen("test.in", "r", stdin);
Init();
int t, cas = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cas);
scanf("%d%d%d", &n, &m, &k);
n++, m++;
LL ans = 0;
if (n == m && m == 1)
ans = k;
else
{
int sum1 = 0, sum2 = 0;
sum1 = ((n+1)/2)*((m+1)/2)+(n/2)*(m/2);
sum2 = n*m-sum1;
for (int i = 1;i < k;i++)
{
for (int j = 1;i+j <= k;j++)
ans = (ans + c[k][i]*c[k-i][j]%MOD*Dp[sum1][i]%MOD*Dp[sum2][j]%MOD)%MOD;
}
}
printf(" %lld\n", ans);
} return 0;
}

LightOJ - 1246 - Colorful Board(DP)的更多相关文章

  1. LightOJ - 1246 Colorful Board(DP+组合数)

    http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...

  2. 1246 - Colorful Board

    1246 - Colorful Board    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...

  3. lightoj 1032 二进制的dp

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1032 #include <cstdio> #include <cst ...

  4. lightOJ 1017 Brush (III) DP

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1017 搞了一个下午才弄出来,,,,, 还是线性DP做的不够啊 看过数据量就知道 ...

  5. lightoj 1381 - Scientific Experiment dp

    1381 - Scientific Experiment Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lightoj.com/vo ...

  6. LightOJ 1068 Investigation (数位dp)

    problem=1068">http://www.lightoj.com/volume_showproblem.php?problem=1068 求出区间[A,B]内能被K整除且各位数 ...

  7. Lightoj 1044 - Palindrome Partitioning (DP)

    题目链接: Lightoj  1044 - Palindrome Partitioning 题目描述: 给一个字符串,问至少分割多少次?分割出来的子串都是回文串. 解题思路: 先把给定串的所有子串是不 ...

  8. lightoj 1084 - Winter(dp+二分+线段树or其他数据结构)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1084 题解:不妨设dp[i] 表示考虑到第i个点时最少有几组那么 if a[i ...

  9. (LightOJ 1030)期望dp

    You are x N grid. Each cell of the cave can contain any amount of gold. Initially you are . Now each ...

随机推荐

  1. 阿里的Netty知识点你又了解多少

    前言 Netty 是一个可以快速开发网络应用程序的 NIO 框架,它大大简化了 TCP 或者 UDP 服务器的网络编程.Netty 的简易和快速开发并不意味着由它开发的程序将失去可维护性或者存在性能问 ...

  2. Linux下zookeeper单机版详细安装

    Linux下zookeeper单机版详细安装 1.zookeeper简介 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop ...

  3. 基于Snappy实现数据压缩和解压

    Snappy是谷歌开源的一个用来压缩和解压的开发包.相较其他压缩算法速率有明显的优势,官方文档显示在64位 i7处理器上,每秒可达200~500MB的压缩速度,不禁感叹大厂的算法就是厉害. 开源项目地 ...

  4. python学习-64 面向对象三大特性----继承1

    面向对象三大特性 1.三大特性? 继承,多态,封装 2.什么是继承? 类的继承和现实生活中的父与子,继承关系是一样的,父类为基类. python中的类继承分为:单继承和多继承 3.举例说明 class ...

  5. python实战项目 — 爬取 校花网图片

    重点: 1.  指定路径创建文件夹,判断是否存在 2. 保存图片文件 # 获得校花网的地址,图片的链接 import re import requests import time import os ...

  6. PAT(B) 1075 链表元素分类(Java)

    题目链接:1075 链表元素分类 (25 point(s)) 题目描述 给定一个单链表,请编写程序将链表元素进行分类排列,使得所有负值元素都排在非负值元素的前面,而 [0, K] 区间内的元素都排在大 ...

  7. PHP网文

    1.php底层运行机制及原理 https://cloud.tencent.com/developer/article/1055801

  8. 关于goquery的“non-standard import”错误

    goquery运行缺包就用get github.com\andybalholm\cascadia下到gopath,然后出现“non-standard import”错误,说明github.com\an ...

  9. foreach引用坑

    先看下面代码 $arr1 = [1, 2]; foreach($arr1 as $key => $value) { $value = $value + 1; } var_dump($key, $ ...

  10. vue 项目之后生成的 dist 文件该怎么在本地启动运行

    简单高效 npm i -g servecd distserve