链接:

https://vjudge.net/problem/LightOJ-1246

题意:

You are given a rectangular board. You are asked to draw M horizontal lines and N vertical lines in that board, so that the whole board will be divided into (M+1) x (N+1) cells. So, there will be M+1 rows each of which will exactly contain N+1 cells or columns. The yth cell of xth row can be called as cell(x, y). The distance between two cells is the summation of row difference and column difference of those two cells. So, the distance between cell(x1, y1) and cell(x2, y2) is

|x1 - x2| + |y1 - y2|

For example, the distance between cell (2, 3) and cell (3, 2) is |2 - 3| + |3 - 2| = 1 + 1 = 2.

After that you have to color every cell of the board. For that you are given K different colors. To make the board more beautiful you have to make sure that no two cells having the same color can have odd distance between them. For example, if you color cell (3, 5) with red, you cannot color cell (5, 8) with red, as the distance between them is 5, which is odd. Note that you can keep some color unused, but you can't keep some cell uncolored.

You have to determine how many ways to color the board using those K colors.

思路:

将图分为两个部分,任意一个部分的点到另一个部分的任意一个点的距离都是奇数。

这样就转变成了一个DP,Dp[i][j]表示n个位置,放了j种颜色。

Dp[i][j] = Dp[i-1][j-1]j+Dp[i-1][j]j

再用组合数分配一下两个部分的颜色。

代码:

// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10; int n, m, k;
LL Dp[410][55];
LL c[55][55]; void Init()
{
memset(c, 0, sizeof(c));
for (int i = 0;i < 55;i++)
{
c[i][0] = 1;
for (int j = 1;j <= i;j++)
{
c[i][j] = (c[i-1][j-1] + c[i-1][j])%MOD;
}
}
for (int i = 1;i < 410;i++)
{
Dp[i][1] = 1;
for (int j = 2;j < 55;j++)
{
Dp[i][j] = (Dp[i-1][j-1]*j+Dp[i-1][j]*j)%MOD;
}
}
} int main()
{
// freopen("test.in", "r", stdin);
Init();
int t, cas = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cas);
scanf("%d%d%d", &n, &m, &k);
n++, m++;
LL ans = 0;
if (n == m && m == 1)
ans = k;
else
{
int sum1 = 0, sum2 = 0;
sum1 = ((n+1)/2)*((m+1)/2)+(n/2)*(m/2);
sum2 = n*m-sum1;
for (int i = 1;i < k;i++)
{
for (int j = 1;i+j <= k;j++)
ans = (ans + c[k][i]*c[k-i][j]%MOD*Dp[sum1][i]%MOD*Dp[sum2][j]%MOD)%MOD;
}
}
printf(" %lld\n", ans);
} return 0;
}

LightOJ - 1246 - Colorful Board(DP)的更多相关文章

  1. LightOJ - 1246 Colorful Board(DP+组合数)

    http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...

  2. 1246 - Colorful Board

    1246 - Colorful Board    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...

  3. lightoj 1032 二进制的dp

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1032 #include <cstdio> #include <cst ...

  4. lightOJ 1017 Brush (III) DP

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1017 搞了一个下午才弄出来,,,,, 还是线性DP做的不够啊 看过数据量就知道 ...

  5. lightoj 1381 - Scientific Experiment dp

    1381 - Scientific Experiment Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lightoj.com/vo ...

  6. LightOJ 1068 Investigation (数位dp)

    problem=1068">http://www.lightoj.com/volume_showproblem.php?problem=1068 求出区间[A,B]内能被K整除且各位数 ...

  7. Lightoj 1044 - Palindrome Partitioning (DP)

    题目链接: Lightoj  1044 - Palindrome Partitioning 题目描述: 给一个字符串,问至少分割多少次?分割出来的子串都是回文串. 解题思路: 先把给定串的所有子串是不 ...

  8. lightoj 1084 - Winter(dp+二分+线段树or其他数据结构)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1084 题解:不妨设dp[i] 表示考虑到第i个点时最少有几组那么 if a[i ...

  9. (LightOJ 1030)期望dp

    You are x N grid. Each cell of the cave can contain any amount of gold. Initially you are . Now each ...

随机推荐

  1. 设置Kafka集群的方法

    1.目标 今天,在这篇Kafka文章中,我们将看到Kafka Cluster Setup.这个Kafka集群教程为我们提供了一些设置Kafka集群的简单步骤.简而言之,为了实现Kafka服务的高可用性 ...

  2. Fedora30 - Xrdp 远程桌面

    Windows RDP 访问 Fedor 远程桌面需要使用 Xrdp 开源工具. [lipandeng@localhost ~]$ sudo dnf install xrdp [lipandeng@l ...

  3. python3的 基础

    ]print(list(set(lst))) # 面试题: # a = 10 # b = 20 # a,b = b,a      # 10000% # print(b)  # 10 # print(a ...

  4. mvn: command not found in Jenkins slave

    在Jenkins上添加了一个slave node, 并绑定了一个团队项目,通过shell来执行后续操作,结果卡在了 mvn: command not found 其实这个node上是配置了maven的 ...

  5. 转:Java接口和抽象类

    转:http://www.cnblogs.com/dolphin0520/p/3811437.html 一.抽象类 在了解抽象类之前,先来了解一下抽象方法.抽象方法是一种特殊的方法:它只有声明,而没有 ...

  6. power shell命令添加SharePoint用户组与用户(用户为域用户)

    查看SharePoint用户组 Get-PnPGroup 查看某一用户组 Get-PnPGroup -Identity "用户组名" 查看某一用户组下的所有成员 Get-PnPGr ...

  7. Microsoft Visual Studio常用快捷键

    快速补全关键字 1)tab; 删除整行代码 1)Ctrl + L; 回到上一个光标位置/前进到下一个光标位置 1)回到上一个光标位置:使用组合键“Ctrl + -”; 2)前进到下一个光标位置:“Ct ...

  8. 2019年北航OO第三次博客总结

    一.JML语言理论基础及其工具链 1. JML语言理论基础 JML是用于对Java程序进行规格化设计的一种表示语言,是一种行为接口规格语言(Behavior Interface Specificati ...

  9. android 更新版本

    1.UpdateManager package com.rfid.util; import java.io.File; import java.io.FileOutputStream; import ...

  10. FreeRTOS互斥信号量

    API函数 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) #define xSemaphoreCreateMutex() xQueueCreateMutex ...