图论 - Bellman-Ford算法
Bellman-Ford
Dijkstra算法虽好,但是不能解决带有负边权的图.
而利用Bellman-Ford可以完美的解决最短路和负边权的问题
朴素Bellman-Ford算法
w[i] 权值
u[i]->v[i] 存储边集
默认大家已经会了邻接表存储,如果有没有学会邻接表存储的小伙伴要先去学习一些邻接表的存储操作哦! _
核心代码:
for(int k = 1; k <= n-1; k++)
for(int i = 1; i <= m; i++)
if(dis[v[i]] > dis[u[i]] + w[i])
dis[v[i]] = dis[u[i]] + w[i];
显然其时间复杂度为O(m*n)
分析过程
下面列出一个具体的松弛过程可帮助大家更好的理解代码:

完整代码:
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int dis[10], n, m, u[10], v[10], w[10];
int inf = 9999999;
cin >> n >> m;
//读入边
for (int i = 1; i <= m; i++)
cin >> u[i] >> v[i] >> w[i];
//初始化dis数组
fill(dis, dis + 10, inf);
dis[1] = 0;//由于要求的是从1->任意一个点的最短距离所以将1的dis设置为0
//Bellman-Ford核心算法
for (int i = 0; i < n - 1; i++)
for (int j = 1; j <= m; j++)
if (dis[v[j]] > dis[u[j]] + w[j])
dis[v[j]] = dis[u[j]] + w[j];
//输出结果
for (int i = 1; i <= n; i++)
cout << dis[i] << " ";
system("pause");
return 0;
}
如果大家有什么疑问的话可以加qq向我提出哦,欢迎各位大佬指出问题。
如果你觉得对你有所帮助的话就给我点个赞,点燃我下次写文章的动力吧 _ !
图论 - Bellman-Ford算法的更多相关文章
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- 图论——最短路径 Dijkstra算法、Floyd算法
1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- 图论算法——最短路径Dijkstra,Floyd,Bellman Ford
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...
- 图论(floyd算法):NOI2007 社交网络
[NOI2007] 社交网络 ★★ 输入文件:network1.in 输出文件:network1.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] 在社交网络( ...
- 图论之Dijkstra算法
Dijkstra算法是图论中经典的最短路径算法之一,主要用于解决单源最短路径问题. 单源最短路径问题,即求某个源节点到其他各个节点的最短路径. Dijkstra算法采用了贪心算法的思想,如图求1号节点 ...
随机推荐
- 20165214 2018-2019-2 《网络对抗技术》Exp8 Web基础 Week11—12
<网络对抗技术>Exp8 Web基础 Week11-12 一.实验目标与内容 1.实践内容 (1).Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与P ...
- Qt应用程序主窗口之二:拖放操作与打印文档
一.拖放操作 对于一个实用的应用程序,不仅希望能从文件菜单中打开一个文件,更希望可以通过拖动直接将桌面上的文件拖入程序界面上来打开,就像可以将.pro文件拖入Creator中来打开整个项目一样.Qt中 ...
- Linux下多网卡绑定bond0及模式
Linux 多网卡绑定 网卡绑定mode共有七种(0~6) bond0.bond1.bond2.bond3.bond4.bond5.bond6 常用的有三种 mode=0:平衡负载模式,有自动备援,但 ...
- Win10开启上帝模式
1.新建一个文件夹2.修改文件夹名字为 上帝模式.{ED7BA470-8E54-465E-825C-99712043E01C}
- 使用 Navicat Premium 将 sql server 的数据库迁移到 mysql 的数据库中
步骤1,打开 Navicat Premium ,创建一个新的 mysql 数据库: 步骤2,选中刚刚创建的新数据库 ,双击选中后点击导入向导,然后选择 "ODBC",并点击下一步 ...
- Oracle的约束
学习笔记: ##约束 *概念:限定用户输入的内容. *案例: *练习 * 1. 在score表的grade列添加CHECK约束,限制grade列 ...
- kvm第一章--概念
- 修改docker容器参数
创建容器时没有添加参数 --restart=always ,导致的后果是:当 Docker 重启时,容器未能自动启动. docker container update --restart=alway ...
- Django:RestFramework之-------路由
11.路由 路由设置: url(r'^(?P<version>[v1|v2]+)/vview\.(?P<format>\w+)$', views.VView.as_view({ ...
- VsCode中编写python环境配置
1. VsCode中编写python环境配置 1.1. 前言 有过开发经验都知道idea一系列的软件虽然功能比较多,但比较容易卡,电脑不好还真容易上火,这里我想要入门python,还是选了款vscod ...