【LOJ#6485】LJJ 学二项式定理(单位根反演)
【LOJ#6485】LJJ 学二项式定理(单位根反演)
题面
题解
显然对于\(a0,a1,a2,a3\)分开算答案。
这里以\(a0\)为例
Ans&=\frac{1}{4}a_0\sum_{i=0}^n [4|i]{n\choose i}s^i\\
&=\frac{1}{4}a_0\sum_{i=0}^n{n\choose i}s^i\sum_{j=0}^3 (\omega_4^{j})^i\\
&=\frac{1}{4}a_0\sum_{j=0}^3\sum_{i=0}^n {n\choose i}s^i(\omega_4^j)^i\\
&=\frac{1}{4}a_0\sum_{j=0}^3(s\omega_4^j+1)^n
\end{aligned}\]
另外几个只需要把\([4|i]\)变成\([4|(i+k)]\)的形式,然后在计算的时候把\(\omega_4^k\)给提取出来就行了。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MOD 998244353
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,ll b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int s,a[4],w,ans;ll n;
int main()
{
int T=read();w=fpow(3,(MOD-1)/4);
while(T--)
{
n=read();s=read();ans=0;
for(int i=0;i<4;++i)a[i]=read();
for(int i=0;i<4;++i)
for(int j=0,t=s,ww=1;j<4;++j,t=1ll*t*w%MOD,ww=1ll*ww*w%MOD)
ans=(ans+1ll*a[i]*fpow(t+1,n)%MOD*fpow(ww,4-i))%MOD;
ans=1ll*ans*fpow(4,MOD-2)%MOD;
printf("%d\n",ans);
}
}
【LOJ#6485】LJJ 学二项式定理(单位根反演)的更多相关文章
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
- LOJ #6485 LJJ 学二项式定理
QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次 ...
- loj #6485. LJJ 学二项式定理 (模板qwq)
$ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...
- LOJ 6485 LJJ学多项式
前言 蒟蒻代码惨遭卡常,根本跑不过 前置芝士--单位根反演 单位根有这样的性质: \[ \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\rig ...
- LOJ6485 LJJ 学二项式定理 解题报告
LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...
随机推荐
- delphi webbrowser用法集锦
delphi webbrowser用法集锦 (2012-05-13 08:29:00) 标签: it 分类: 软件_Software WebBrowser1.GoHome; //到浏览器默认主页 We ...
- Writing Your Own Widget(自定义组件)
英文地址:http://dojotoolkit.org/reference-guide/1.10/quickstart/writingWidgets.html#quickstart-writingwi ...
- 记一条复杂的PHP中写的关于查询的mysql语句
$sql="select p.*,q.md from xz_laptop as p inner join xz_laptop_pic as q on p.lid=q.lid title li ...
- vue 开发系列(九) VUE 动态组件的应用
业务场景 我们在开发表单的过程中会遇到这样的问题,我们选择一个控件进行配置,控件有很多中类型,比如文本框,下来框等,这些配置都不同,因此需要不同的配置组件来实现. 较常规的方法是使用v-if 来实现, ...
- vue中webpack的配置理解
当我们需要和后台分离部署的时候,必须配置config/index.js: 用vue-cli 自动构建的目录里面 (环境变量及其基本变量的配置) var path = require('path') ...
- 基于图的异常检测(三):GraphRAD
基于图的异常检测(三):GraphRAD 风浪 一个快乐的数据玩家/风控/图挖掘 24 人赞同了该文章 论文:<GraphRAD: A Graph-based Risky Account Det ...
- Rust第一次---centos 7下的安装,配置,测试
现在安装都依赖于网络,命令比较简单. 一,运行脚本,安装runstup 1,运行如下脚本: curl https://sh.rustup.rs -sSf | sh 2,输入默认项1,完成余下的安装 二 ...
- 201871010132--张潇潇--《面向对象程序设计(java)》第十五周学习总结
博文正文开头格式:(2分) 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.co ...
- Docker安装(二)
一.前提条件 目前,CentOS 仅发行版本中的内核支持 Docker. Docker 运行在 CentOS 7 上,要求系统为64位.系统内核版本为 3.10 以上. Docker 运行在 Cent ...
- 洛谷 P1182 数列分段 Section II
洛谷 P1182 数列分段 Section II 洛谷传送门 题目描述 对于给定的一个长度为N的正整数数列A-iA−i,现要将其分成M(M≤N)M(M≤N)段,并要求每段连续,且每段和的最大值最小. ...