python 排序 归并排序
算法思想
迭代法:
def merge_sort5(collection):
length=len(collection)
#定义合并数组函数,参数是两个数组,返回一个包含两个数组的结果集
def merge(collection1,collection2):#数组长度可能不相等
result=[]
while collection1 and collection2:
# while len(collection1)>=1 and len(collection2)>=1:#不要这样写
result.pop(collection1.pop(0) if collection1[0]<=collection2[0] else collection2.pop(0))
# result.append(collection1.pop(0)) if collection1[0]<=collection2[0] else result.append(collection2.pop(0))
return result+collection1+collection2#比下面的好
# result.extend(collection1+collection2)
# return result
temps=[pow(2,i) for i in range(15)]
#定义存放根据步长切分后多余的,当有多余的让他和前面多余的进行合并
superfluous=[]
for temp in temps:
flage=True
left_index=-1
while left_index+2*temp<length:#减一是因为截取的时候不到右边
#这里可能会出错哦
flage=False
collection[left_index+1:left_index+2*temp+1]=merge(collection[left_index+1:left_index+temp+1],collection[left_index+temp+1:left_index+2*temp+1])
left_index+=2*temp
superfluous=merge(superfluous,collection[left_index+1:])#将多余的放到这里,当有新的多余的和老的合并
del(collection[left_index+1:])
if flage:
break
return superfluous
算法分析:稳定排序,需要O(n)额外空间、时间复杂度(一共有log(2,N)次外循环,内层循环分别为(n/1,n/2,n/4....n/temp)而(每次内循环中的归并操作的时间复杂度都是temp,)所有内层循环的时间复杂度是N(即n/temp*temp)所以T(n)=nlog(2,n),根据换地公式,log(2,n)=log(1,n)/log(1,2),考虑到取同数量级时不考虑系数,所以T(n)=O(nlogn)

比较
仍然没有快排快:随机数据 时间是快排的两倍
(sort) λ python some_sort.py
详细数据:[0.00100016594, 0.00299906731, 0.00100016594, 0.00299859047, 0.00100040436, 0.00299811363, 0.00199818611, 0.00199770927, 0.00200009346, 0.00199866295, 0.00199770927, 0.00099945068, 0.00200
009346, 0.00099825859, 0.0019993782, 0.0030002594, 0.00099873543, 0.00199723244, 0.00100016594, 0.00199866295, 0.00199818611, 0.00099897385, 0.00299787521, 0.00100016594, 0.00199890137, 0.0009996891, 0.00199961662, 0.00099992752, 0.00199794769, 0.00099301338, 0.00299859047, 0.00099921227, 0.0019993782, 0.00099992752, 0.00199961662, 0.00199913979, 0.00100040436, 0.0019993782, 0.0009996891, 0.00199961662, 0.00199842453, 0.00099873543, 0.0029976368, 0.00100016594, 0.00299835205, 0.00099921227, 0.00299882889, 0.0009996891, 0.00299835205, 0.00200009346, 0.00199985504, 0.00299835205, 0.0009996891, 0.00199866295, 0.00199961662, 0.00299930573, 0.00099873543, 0.00199985504, 0.00301456451, 0.00099849701, 0.00299859047, 0.00099825859, 0.00200128555, 0.00199866295, 0.0009996891, 0.00199723244, 0.00199913979, 0.00199866295, 0.00100016594, 0.00199961662, 0.00099992752, 0.00199842453, 0.00099921227, 0.00199842453, 0.00099897385, 0.00199890137, 0.00199866295, 0.00199866295, 0.00099921227, 0.00199985504, 0.00099873543, 0.00199913979, 0.00099945068, 0.00199890137, 0.00299787521, 0.00199866295, 0.00199818611, 0.00099992752, 0.00199818611, 0.00099921227, 0.00199866295, 0.00099992752, 0.00199794769, 0.00100040436, 0.00299906731, 0.00099992752, 0.00199818611, 0.00099945068, 0.00199866295, 0.00099992752]
运行了100次,平均运行时间差(me-other)/(bubble-quick)(正数代表你是个弟弟)是:0.00176918983
前者(插入排序)平均运行时间0.00361800909,后者(快排)平均运行时间0.00184881926,前者约是后者的1.9569倍
比插入快一个数量级:
详细数据:[-0.02898788452, -0.02898383141, -0.02898526192, -0.02896666527, -0.02997136116, -0.02898812294, -0.02801847458, -0.02900123596, -0.02998185158, -0.02995634079, -0.02994823456, -0.02992892
265, -0.02899622917, -0.10892653465, -0.03997755051, -0.02798676491, -0.02946019173, -0.02899646759, -0.02998185158, -0.02795672417, -0.02894616127, -0.03098273277, -0.02894926071, -0.02896404266, -0.02900695801, -0.02801513672, -0.02901649475, -0.02798366547, -0.09094834328, -0.04997181892, -0.02819728851, -0.02898263931, -0.02879166603, -0.02898216248, -0.02898240089, -0.02900052071, -0.02798342705, -0.02898788452, -0.03598976135, -0.02799391747, -0.0279853344, -0.02898383141, -0.02896499634, -0.02799677849, -0.03098726273, -0.02698349953, -0.02898192406, -0.02800416946, -0.02898788452, -0.02897882462, -0.02699589729, -0.02898049355, -0.02898478508, -0.02797055244, -0.03001332283, -0.02898716927, -0.02798342705, -0.02899360657, -0.02898335457, -0.02797985077, -0.02797579765, -0.02797961235, -0.02798891068, -0.02898812294, -0.02796649933, -0.02997922897, -0.02796721458, -0.02697610855, -0.02898406982, -0.02798390388, -0.02801299095, -0.02999520302, -0.03098082542, -0.0290017128, -0.02898097038, -0.02995085716, -0.02899312973, -0.02798342705, -0.02799725533, -0.02898263931, -0.02898335457, -0.02794861794, -0.03400492668, -0.03496909142, -0.03293538094, -0.03296351433, -0.03296232224, -0.02998614311, -0.02898216248, -0.02798914909, -0.02898836136, -0.02896380424, -0.02897286415, -0.03096866608, -0.02999520302, -0.02998280525, -0.02898335457, -0.03000807762, -0.02799677849, -0.03100776672]
运行了100次,平均运行时间差(me-other)/(bubble-quick)(正数代表你是个弟弟)是:-0.03094664574
前者(归并迭代法排序)平均运行时间0.00373820066,后者(快排)平均运行时间0.03468484640,前者约是后者的0.1078倍
递归法
def merge_sort6(collection):
'''自己写的(递归法)'''
#巧妙之处在于要想到能把merge和merge_sort6结合起来递归,思考的线索是根据参数的格式
def merge(left,right):
result=[]
while left and right:
result.append(left.pop(0) if left[0]<=right[0] else right.pop(0))
return result+left+right
#递归
length=len(collection)
if length==1:
return collection
while True:
mid=length//2
return(merge(merge_sort6(collection[:mid]),merge_sort6(collection[mid:])))
对比
与采用迭代法的相比,速度慢了一半,但胜在代码简单
详细数据:[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0009996891, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0009996891, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.00099945068, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
运行了100次,平均运行时间差(me-other)/(bubble-quick)(正数代表你是个弟弟)是:0.00000999928
前者(归并迭代法排序)平均运行时间0.00001999378,后者(递归法)平均运行时间0.00000999451,前者约是后者的2.0005倍
python 排序 归并排序的更多相关文章
- Python排序搜索基本算法之归并排序实例分析
Python排序搜索基本算法之归并排序实例分析 本文实例讲述了Python排序搜索基本算法之归并排序.分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序 ...
- python实现归并排序,归并排序的详细分析
python实现归并排序,归并排序的详细分析. 学习归并排序的过程是十分痛苦的.它并不常用,看起来时间复杂度好像是几种排序中最低的,比快排的时间复杂度还要低,但是它的执行速度不是最快的.很多朋友不 ...
- python 排序算法总结及实例详解
python 排序算法总结及实例详解 这篇文章主要介绍了python排序算法总结及实例详解的相关资料,需要的朋友可以参考下 总结了一下常见集中排序的算法 排序算法总结及实例详解"> 归 ...
- 带你掌握4种Python 排序算法
摘要:在编程里,排序是一个重要算法,它可以帮助我们更快.更容易地定位数据.在这篇文章中,我们将使用排序算法分类器对我们的数组进行排序,了解它们是如何工作的. 本文分享自华为云社区<Python ...
- python排序之二冒泡排序法
python排序之二冒泡排序法 如果你理解之前的插入排序法那冒泡排序法就很容易理解,冒泡排序是两个两个以向后位移的方式比较大小在互换的过程好了不多了先上代码吧如下: 首先还是一个无序列表lis,老规矩 ...
- python排序之一插入排序
python排序之一插入排序 首先什么是插入排序,个人理解就是拿队列中的一个元素与其之前的元素一一做比较交根据大小换位置的过程好了我们先来看看代码 首先就是一个无序的列表先打印它好让排序后有对比效果, ...
- 用 Python 排序数据的多种方法
用 Python 排序数据的多种方法 目录 [Python HOWTOs系列]排序 Python 列表有内置就地排序的方法 list.sort(),此外还有一个内置的 sorted() 函数将一个可迭 ...
- python排序算法实现(冒泡、选择、插入)
python排序算法实现(冒泡.选择.插入) python 从小到大排序 1.冒泡排序: O(n2) s=[3,4,2,5,1,9] #count = 0 for i in range(len(s)) ...
- Python排序算法之选择排序定义与用法示例
Python排序算法之选择排序定义与用法示例 这篇文章主要介绍了Python排序算法之选择排序定义与用法,简单描述了选择排序的功能.原理,并结合实例形式分析了Python定义与使用选择排序的相关操作技 ...
随机推荐
- MongoDB 之pymongodb
import pymongo import json from bson import ObjectId mongoclient = pymongo.MongoClient(host="12 ...
- ZooKeeper架构原理你学会了吗?
Zookeeper是分布式一致性问题的工业解决方案,是Apache Hadoop下解决分布式一致性的一个组件,后被分离出来成为Apache的顶级项目. 工程来源:是雅虎公司内部项目,据说雅虎内部很多项 ...
- fatal error C1083: 无法打开包括文件: “Halcon.h”: No such file or directory
这个文件是有包括的.但编译时报错. 解决方法:我把debug模式改为release模式就好了.
- 石欣钰-201871010117 《面向对象程序设计(java)》第六、七周学习总结
项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业要求在哪里 https://www.cnblogs.com/nwnu-daizh/p/ ...
- day33_8_15 并发编程4,线程池与协程,io模型
一.线程池 线程池是一个处理线程任务的集合,他是可以接受一定量的线程任务,并创建线程,处理该任务,处理结束后不会立刻关闭池子,会继续等待提交的任务,也就是他们的进程/线程号不会改变. 当线程池中的任务 ...
- 【入门篇一】SpringBoot简介(1)
官网:https://spring.io/projects/spring-boot 一.什么是SpringBoot Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新S ...
- LeetCode 112. Path Sum路径总和 (C++)
题目: Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up ...
- VNC远程登陆树莓派3(包括开机启动)
在树莓派上安装VNC需要使用命令行.如果需要远程操作安装VNC,就必须通过SSH登录到命令行界面(Raspbian的默认用户名是:pi,默认密码是:raspberry). 安装 命令行输入: sudo ...
- 学习-JVM命令
jstat jstat (JVM statistics Monitoring)是用于监视虚拟机运行时状态信息的命令,它可以显示出虚拟机进程中的类装载.内存.垃圾收集.JIT编译等运行数据. 格式:js ...
- ABP 相关基础知识
好文章: https://www.cnblogs.com/1zhk/p/5268054.html 关键字:Internal 限定的是只有在同一程序集中可访问,可以跨类 关键字:volatile 一个变 ...