Division

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)

Total Submission(s): 2664    Accepted Submission(s): 1050

Problem Description
Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  

Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that








and the total cost of each subset is minimal.
 
Input
The input contains multiple test cases.

In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 

For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.


 
Output
For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.


 
Sample Input
2
3 2
1 2 4
4 2
4 7 10 1
 
Sample Output
Case 1: 1
Case 2: 18

/*分析:
首先对于斜率dp我有个总结:
斜率dp一般应用于连续的一段或几段求最值
既1~k,k+1~j,j+1~...这样分段而不能跳开来求
仅仅有连续段才干用单调队列维护最值然后
dp[i]=dp[j]+(j+1~i)的值。 对于本题:
题目要求m个子数组的最值。而子数组中的元素不一定是原数组连续的
所以肯定不能直接用斜率优化,经过分析能够发现先进行从小到大排序
然后连续的m段最值就是能够求最值了。 所以:先对原数组进行从小到大排序
dp[i][j]表示以i结尾的j段的最值
从k+1~i作为一段
则:dp[i][j]=dp[k][j-1]+(s[i]-s[k+1])^2
如今就是怎样求到这个k使得dp[i][j]最小
如果k2<=k1<i
若:dp[k1][j-1]+(s[i]-s[k1+1])^2 <= dp[k2][j-1]+(s[i]-s[k2+1])^2
=>dp[k1][j-1]+s[k1+1]^2 - (dp[k2][j-1]+s[k2+1]^2) / (2s[k1+1]-2s[k2+1]) <= s[i]
所以:
y1 = dp[k1][j-1]+s[k1+1]^2
x1 = 2s[k1+1]
y2 = dp[k2][j-1]+s[k2+1]^2
x2 = 2s[k2+1] =>(y1 - y2)/(x1 - x2) <= i
单调队列维护下凸折线
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#include <limits.h>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX = 10000+10;
int n,m,index;
int q[MAX];
int s[MAX],dp[2][MAX];//採用滚动数组 int GetY(int k1,int k2){
return dp[index^1][k1]+s[k1+1]*s[k1+1] - (dp[index^1][k2]+s[k2+1]*s[k2+1]);
} int GetX(int k1,int k2){
return 2*(s[k1+1]-s[k2+1]);
} int DP(){
int head=0,tail=1;
index=0;
for(int i=1;i<=n;++i)dp[index][i]=INF;//初始化
//dp[index][0]=0;
for(int i=1;i<=m;++i){
index=index^1;
head=tail=0;
q[tail++]=0;
for(int j=1;j<=n;++j){
//dp[index^1][0]=(i-1)*(s[j]-s[1])*(s[j]-s[1]);
while(head+1<tail && GetY(q[head+1],q[head]) <= GetX(q[head+1],q[head])*s[j])++head;
while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2]) <= GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail;
q[tail++]=j;
int k=q[head];
dp[index][j]=dp[index^1][k]+(s[j]-s[k+1])*(s[j]-s[k+1]);
}
}
return dp[index][n];
} int main(){
int t,num=0;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)scanf("%d",s+i);
sort(s+1,s+1+n);
printf("Case %d: %d\n",++num,DP());
}
return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

hdu3480二维斜率优化DP的更多相关文章

  1. 2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)

    传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...

  2. 斜率优化DP学习笔记

    先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...

  3. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  4. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  5. bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)

    Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...

  6. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  7. HDU2829 Lawrence —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-2829 Lawrence Time Limit: 2000/1000 MS (Java/Others)    Memory L ...

  8. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

  9. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

随机推荐

  1. eclipse重构详解(转)

    重构是对软件内部结构的一种调整,目的是在不改变软件行为的前提下,提高其可理解性,降低其修改成本.开发人员可以使用一系列重构准则,在不改变软件行为的前提下,调整软件的结构. 有很多种原因,开发人员应该重 ...

  2. Hibernate操作Clob数据类型

    在POJO字符串可以声明为一个大型对象java.lang.String要么java.sql.Clob种类. 当程序从数据库加载Clob数据的类型.负荷只有一个Clob数据的逻辑指针类型.我们需要通过使 ...

  3. JS多语种方式

    方案: 在不同的移动平台(IOS.Android)上,并建立了HTML页面通信框架.主要业务逻辑HTML发展:我要支持多语言开发. 动机: 通过积极主动的信息方式,前一页完成初始化,获取当前语言选项. ...

  4. java 对map排序

    public static Map<String, String> sortMapByKey(Map<String, String> map) { if (map == nul ...

  5. [SQL]透過redgate SQL Monitor 來找出 ASYNC_NETWORK_IO 問題

    原文:[SQL]透過redgate SQL Monitor 來找出 ASYNC_NETWORK_IO 問題 最近因為在查一個SQL的效能問題,透過 sys.dm_os_wait_stats 來取得To ...

  6. Google Maps Android API v2 (1)- 入门

    才可以开始工作的API,你将需要下载的API,并确保你有一个谷歌地图Android的API V2关键.API和关键是免费提供的. 概观 获得谷歌地图Android的API V2 谷歌地图API密钥 显 ...

  7. Thread.join()分析方法

    API: join public final void join() throws InterruptedException 等待该线程终止. 抛出: InterruptedException - 假 ...

  8. Android开发之Handler和Looper的关系

              关于Handler的总结. Message:消息,当中包括了消息ID,消息处理对象以及处理的数据等,由MessageQueue统一列队,终由Handler处理. Handler:处 ...

  9. 认识Backbone (一)

    Backbone.js为复杂WEB应用程序提供模型(models).集合(collections).视图(views)的结构.其中模型用于绑定键值数据和自定义事件:集合附有可枚举函数的丰富API: 视 ...

  10. Android利用网络编程HttpClient批量上传(一个)

    请尊重他人的劳动成果.转载请注明出处:Android网络编程之使用HttpClient批量上传文件 我曾在<Android网络编程之使用HTTP訪问网络资源>一文中介绍过HttpCient ...