Division

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)

Total Submission(s): 2664    Accepted Submission(s): 1050

Problem Description
Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  

Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that








and the total cost of each subset is minimal.
 
Input
The input contains multiple test cases.

In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 

For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.


 
Output
For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.


 
Sample Input
2
3 2
1 2 4
4 2
4 7 10 1
 
Sample Output
Case 1: 1
Case 2: 18

/*分析:
首先对于斜率dp我有个总结:
斜率dp一般应用于连续的一段或几段求最值
既1~k,k+1~j,j+1~...这样分段而不能跳开来求
仅仅有连续段才干用单调队列维护最值然后
dp[i]=dp[j]+(j+1~i)的值。 对于本题:
题目要求m个子数组的最值。而子数组中的元素不一定是原数组连续的
所以肯定不能直接用斜率优化,经过分析能够发现先进行从小到大排序
然后连续的m段最值就是能够求最值了。 所以:先对原数组进行从小到大排序
dp[i][j]表示以i结尾的j段的最值
从k+1~i作为一段
则:dp[i][j]=dp[k][j-1]+(s[i]-s[k+1])^2
如今就是怎样求到这个k使得dp[i][j]最小
如果k2<=k1<i
若:dp[k1][j-1]+(s[i]-s[k1+1])^2 <= dp[k2][j-1]+(s[i]-s[k2+1])^2
=>dp[k1][j-1]+s[k1+1]^2 - (dp[k2][j-1]+s[k2+1]^2) / (2s[k1+1]-2s[k2+1]) <= s[i]
所以:
y1 = dp[k1][j-1]+s[k1+1]^2
x1 = 2s[k1+1]
y2 = dp[k2][j-1]+s[k2+1]^2
x2 = 2s[k2+1] =>(y1 - y2)/(x1 - x2) <= i
单调队列维护下凸折线
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#include <limits.h>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX = 10000+10;
int n,m,index;
int q[MAX];
int s[MAX],dp[2][MAX];//採用滚动数组 int GetY(int k1,int k2){
return dp[index^1][k1]+s[k1+1]*s[k1+1] - (dp[index^1][k2]+s[k2+1]*s[k2+1]);
} int GetX(int k1,int k2){
return 2*(s[k1+1]-s[k2+1]);
} int DP(){
int head=0,tail=1;
index=0;
for(int i=1;i<=n;++i)dp[index][i]=INF;//初始化
//dp[index][0]=0;
for(int i=1;i<=m;++i){
index=index^1;
head=tail=0;
q[tail++]=0;
for(int j=1;j<=n;++j){
//dp[index^1][0]=(i-1)*(s[j]-s[1])*(s[j]-s[1]);
while(head+1<tail && GetY(q[head+1],q[head]) <= GetX(q[head+1],q[head])*s[j])++head;
while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2]) <= GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail;
q[tail++]=j;
int k=q[head];
dp[index][j]=dp[index^1][k]+(s[j]-s[k+1])*(s[j]-s[k+1]);
}
}
return dp[index][n];
} int main(){
int t,num=0;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)scanf("%d",s+i);
sort(s+1,s+1+n);
printf("Case %d: %d\n",++num,DP());
}
return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

hdu3480二维斜率优化DP的更多相关文章

  1. 2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)

    传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...

  2. 斜率优化DP学习笔记

    先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...

  3. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  4. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  5. bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)

    Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...

  6. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  7. HDU2829 Lawrence —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-2829 Lawrence Time Limit: 2000/1000 MS (Java/Others)    Memory L ...

  8. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

  9. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

随机推荐

  1. php查找字符串是否存在

    strstr //搜索字符串在另一字符串中的首次出现(对大小写敏感) //该函数返回字符串的其余部分(从匹配点).如未找到则返回 false stristr //查找字符串在另一字符串中第一次出现的位 ...

  2. 为什么不要在android或者ios上直连mysql或者sqlserver之类的数据库(跳大神)

    很多同学 都有直连这些数据库的想法,假设我说了下面二个问题之后你还想直连,那我也没办法 数据库是一个服务端最重要的部分,也是最脆弱的部分,更是最敏感的部分 假设直连会造成例如以下问题 1.安全问题,你 ...

  3. Android_declare-styleable_自己定义控件的属性

    1.简单实例 (1).在res/values文件下定义一个attrs.xml文件 <? xml version="1.0" encoding="utf-8" ...

  4. WPF 3D 常用类(1)

    原文:WPF 3D 常用类(1) 几何数据相关类 Geometry3D 抽象类, 用于定义物体的几何数据, 可用于计算HitTest和BoundingBox MeshGeometry3D Geomet ...

  5. C语言中的static 具体分析

    google了近三页的关于C语言中static的内容,发现可用的信息非常少,要么长篇大论不知所云要么在关键之处几个字略过,对于想挖掘底层原理的刚開始学习的人来说參考性不是非常大.所以,我这篇博文博採众 ...

  6. iOS Crash获取闪回日志和上传server

    首先我们整理常常会闪退的异常哪些:数组越界.空引用.引用没有定义方法.内存空间不足等等. 怎样获取crash闪退日志 -- 工具查看 先看第一个问题怎样查看,我搜索的方法有下面几个: 第一个方法:XC ...

  7. 【原创】纯OO:从设计到编码写一个FlappyBird (六)

    第五部分请看这里 终于到了最后一个部分了! 这里使用SimpleJudge类来实现Judge接口. 首先是SimpleJudge需要的实例变量: 0.final LinkedList<Pilla ...

  8. OllyDbg 使用注意事项 (十)

    OllyDbg 用笔记 (十) 參考 书:<加密与解密> 视频:小甲鱼 解密系列 视频 演示样例程序下载地址:http://pan.baidu.com/s/1kT1ce83 这个程序能够从 ...

  9. freemarker错误七

    1.错误叙述性说明 五月 30, 2014 11:33:57 下午 freemarker.log.JDK14LoggerFactory$JDK14Logger error 严重: Template p ...

  10. js字的数目的计算方法(与word计算公式为)

    [背景] 用户往往需要一定数量的单词填写必填字段限制,但js由value.length取出来的往往差异很大,与实际的话.通常真正的用户抱怨.很显然,我没有写那么多字,但系统提示超过字数限制.然后,我学 ...