传送门

闵神讲网络流应用的例题,来水一水

要写出这道题,需要深入理解两个概念,异或和最小割。

异或具有相对独立性,所以我们把每一位拆开来看,即做大概$32$次最小割。然后累加即可。

然后是最小割把一张图分割成两个集合,简单看就是0集合和1集合。

简单的建图:

原图不变,改成双向边,所有的流量限制为1。然后所有S点向点权为1的连边,点权为0的向T连边,容量都是正无穷。

为什么这样建?首先看,最小割把一张图分成两个点集。而因为我们的流量限制可以让最小割只割真实存在的边,而割的也只有可能是跨越0集合和1集合的边。所以最后的最小割就是答案。

//SPOJ839
//by Cydiater
//2017.1.15
#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iomanip>
#include <queue>
#include <map>
#include <algorithm>
#include <cstring>
#include <string>
#include <bitset>
#include <set>
#include <vector>
using namespace std;
#define ll long long
#define up(i,j,n)	for(int i=j;i<=n;i++)
#define down(i,j,n)	for(int i=j;i>=n;i--)
#define cmax(a,b)	a=max(a,b)
#define cmin(a,b)	a=min(a,b)
#define Auto(i,node)	for(int i=LINK[node];i;i=e[i].next)
#define vci 		vector<int>
const int MAXN=1e4+5;
const int oo=0x3f3f3f3f;
inline int read(){
	char ch=getchar();int x=0,f=1;
	while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int LINK[MAXN],len=0,N,M,Val[MAXN],TT,Q,tag[MAXN],S,T,ans=0,q[MAXN],head,tail,level[MAXN];
bool used[MAXN],vis[MAXN];
vci E[MAXN];
struct edge{
	int x,y,next,flow,reverse;
}e[MAXN<<1];
namespace solution{
	void Clear(){
		len=0;
		memset(LINK,0,sizeof(LINK));
	}
	inline void insert(int x,int y,int flow,int delta){
		e[++len].next=LINK[x];LINK[x]=len;e[len].y=y;
		e[len].flow=flow;e[len].reverse=len+delta;
	}
	void Prepare(){
		Clear();
		N=read();M=read();
		S=N+1;T=N+2;
		up(i,1,N)E[i].clear();
		up(i,1,M){
			int x=read(),y=read();
			E[x].push_back(y);
			E[y].push_back(x);
		}
		Q=read();
		memset(Val,0,sizeof(Val));
                memset(used,0,sizeof(used));
		while(Q--){
			int node=read(),val=read();
			Val[node]=val;used[node]=1;
		}
	}
	void Build(){
		Clear();
		up(i,1,N){
			int siz=E[i].size();
			up(j,0,siz-1){
				insert(i,E[i][j],1,1);
				insert(E[i][j],i,0,-1);
			}
		}
		up(i,1,N){
			if(tag[i]==1){
				insert(S,i,oo,1);
				insert(i,S,0,-1);
			}else if(tag[i]==0){
				insert(i,T,oo,1);
				insert(T,i,0,-1);
			}
		}
	}
	bool makelevel(){
		memset(level,-1,sizeof(level));
		head=1;tail=0;level[S]=0;q[++tail]=S;
		for(;head<=tail;head++){
			int node=q[head];
			Auto(i,node)if(e[i].flow>0&&level[e[i].y]==-1){
				level[e[i].y]=level[node]+1;
				q[++tail]=e[i].y;
			}
		}
		return level[T]!=-1;
	}
	int addflow(int node,int flow){
		if(node==T)	return flow;
		int maxflow=0,d=0;
		Auto(i,node)if(level[e[i].y]==level[node]+1&&e[i].flow>0){
			if(d=addflow(e[i].y,min(e[i].flow,flow-maxflow))){
				maxflow+=d;
				e[i].flow-=d;
				e[e[i].reverse].flow+=d;
			}
		}
		if(maxflow==0)level[node]=-1;
		return maxflow;
	}
	void Dinic(int dig){
		int d;
		while(makelevel())
			while(d=addflow(S,oo))
				ans+=(d<<dig);
	}
	void DFS(int node){
		vis[node]=1;tag[node]=1;
		Auto(i,node)if(e[i].flow>0&&!vis[e[i].y])
			DFS(e[i].y);
	}
	void Solve(){
		up(dig,0,31){
			up(i,1,N){
				if(used[i])	tag[i]=((Val[i]&(1<<dig))>>dig);
				else 		tag[i]=-1;
			}
			Build();
			Dinic(dig);
			up(i,1,N)tag[i]=0;
			memset(vis,0,sizeof(vis));
			DFS(S);
			up(i,1,N)if(!used[i])Val[i]|=(tag[i]<<dig);
		}
		up(i,1,N)printf("%d\n",Val[i]);
	}
}
int main(){
	//freopen("input.in","r",stdin);
	using namespace solution;
	TT=read();
	while(TT--){
		Prepare();
		Solve();
	}
	return 0;
}

SPOJ839 OPTM - Optimal Marks的更多相关文章

  1. 图论(网络流):SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...

  2. SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks no tags  You are given an undirected graph G(V, E). Each vertex has a mark whic ...

  3. 【SPOJ839】Optimal Marks 网络流

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  4. SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)

    http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...

  5. spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】

    因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...

  6. Luogu SP839 OPTM - Optimal Marks(按位最小割)

    这道题和 BZOJ 2400 是一道题,不多讲了 CODE #include <cstdio> #include <cstring> #include <vector&g ...

  7. [SPOJ839]Optimal Marks

    [SPOJ839]Optimal Marks 试题描述 You are given an undirected graph \(G(V, E)\). Each vertex has a mark wh ...

  8. SP839 Optimal marks(最小割)

    SP839 Optimal marks(最小割) 给你一个无向图G(V,E). 每个顶点都有一个int范围内的整数的标记. 不同的顶点可能有相同的标记.对于边(u,v),我们定义Cost(u,v)= ...

  9. Optimal Marks(optimal)

    Optimal Marks(optimal) 题目描述 定义无向图边的值为这条边连接的两个点的点权异或值. 定义无向图的值为无向图中所有边的值的和. 给定nn个点mm条边构成的图.其中有些点的权值是给 ...

随机推荐

  1. C语言客户端服务器代码

    /* sockclnt.c*/ #include <stdio.h>#include <string.h>#include <stdlib.h>#include & ...

  2. 快学Scala-第九章 文件和正则表达式

    知识点: 1.读取文件中的所有行,可以调用scala.io.Source对象的getLines方法: import scala.io.Source val source = Source.from(& ...

  3. 异步加载AsyncTask

    private void huodeshuju() {        new AsyncTask<String, Void, String>() {            @Overrid ...

  4. CodeForces 678C Joty and Chocolate

    简单题. #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> ...

  5. hadoop的安全模式

    在安全模式下:不能增.删.改操作:但可以查看. 查看hadoop是否i处于安全模式下: 执行命令:hadoop dfsadmin -safemode get 进入hadoop的安全模式下: 执行命令: ...

  6. POJ 1821 单调队列+dp

    题目大意:有K个工人,有n个墙,现在要给墙涂色.然后每个工人坐在Si上,他能刷的最大范围是Li,且必须是一个连续子区间,而且必须过Si,他刷完后能获得Pi钱 思路:定义dp[i][j]表示前i个人,涂 ...

  7. usb调试

    修改文件:/home/mxy/code/v1/kernel-3.10/drivers/power/mediatek/battery_common.c //bool AutoDebug=true;//x ...

  8. 实例:SSH结合Easyui实现Datagrid的新增功能和Validatebox的验证功能

    在我前面一篇分页的基础上,新增了添加功能和添加过程中的Ajax与Validate的验证功能.其他的功能在后面的博客写来,如果对您有帮助,敬请关注. 先看一下实现的效果: (1)点击添加学生信息按键后跳 ...

  9. initWithNibName与viewDidLoad的执行关系以及顺序

    转载自:http://www.java123.net/v/380331.html 一个ViewController,一般通过init或initWithNibName来加载.二者没有什么不同,init最 ...

  10. SDAU课程练习--problemG(1006)

    题目描述 Problem Description The highest building in our city has only one elevator. A request list is m ...