题意:求1-b和1-d之内各选一个数组成数对。问最大公约数为k的数对有多少个,数对是有序的。(b,d,k<=100000)

解法1: 这个能够简化成1-b/k 和1-d/k 的互质有序数对的个数。

如果b=b/k。d=d/k,b<=d.欧拉函数能够算出1-b与1-b之内的互质对数。然后在b+1到d的数i,求每一个i在1-b之间有多少互质的数。

解法是容斥,getans函数參数的意义:1-tool中含有rem位置之后的i的质因子的数的个数。

for(int j=rem;j<=factor[i][0];j++)
ans+=tool/factor[i][j]-getnum(i,tool/factor[i][j],j+1);

这个循环中。ans加的等号后每项表示当前最大的质因子是factor[i][j]的数量,目的是去重。

解法2:莫比乌斯,莫比乌斯数组确实非常实用。事实上也非常easy,mou的位置的含义是,首先假设i有个质因子出现2次或以上。则mou值为0,否则1与-1跟i的质因子奇偶性决定。目的也是容斥。

解法1代码:

/******************************************************
* @author:xiefubao
*******************************************************/
#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <string.h>
//freopen ("in.txt" , "r" , stdin);
using namespace std; #define eps 1e-8
#define zero(_) (abs(_)<=eps)
const double pi=acos(-1.0);
typedef long long LL;
const int Max=100010;
const LL INF=0x3FFFFFFF;
int a, b, c, d, k;
int factor[Max][20];
bool rem[Max];
LL oular[Max];
void init()
{
for(int i=1; i<Max; i++)
oular[i]=i;
for(LL i=2; i<Max; i++)
{
if(!rem[i])
{
factor[i][++factor[i][0]]=i;
oular[i]=i-1;
for(LL j=i*2; j<Max; j+=i)
{
factor[j][++factor[j][0]]=i;
rem[j]=1;
oular[j]=oular[j]*(i-1)/i;
}
}
}
for(int i=1; i<Max; i++)
oular[i]=oular[i]+oular[i-1];
}
LL getnum(int i,int tool,int rem)
{
int ans=0;
for(int j=rem;j<=factor[i][0];j++)
ans+=tool/factor[i][j]-getnum(i,tool/factor[i][j],j+1);
return ans;
}
int main()
{
int t;
cin>>t;
init();int kk=1;
while(t--)
{
cin>>a>>b>>c>>d>>k;
printf("Case %d: ",kk++);
if(k==0)
{
cout<<"0\n";
continue;
}
b/=k;
d/=k;
if(b>d)swap(b,d);
LL ans=oular[b];
for(int i=b+1;i<=d;i++)
{
ans+=b-getnum(i,b,1);
}
cout<<ans<<endl;
}
return 0;
}

解法2代码:

/******************************************************
* @author:xiefubao
*******************************************************/
#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <string.h>
//freopen ("in.txt" , "r" , stdin);
using namespace std; #define eps 1e-8
#define zero(_) (abs(_)<=eps)
const double pi=acos(-1.0);
typedef long long LL;
const int Max=100010;
const LL INF=0x3FFFFFFF;
int a, b, c, d, k;
bool rem[Max];
int mou[Max];
void init()
{
mou[1]=1;
for(LL i=2; i<Max; i++)
{
if(!rem[i])
{
mou[i]=i;
for(LL j=i*2; j<Max; j+=i)
{
rem[j]=1;
mou[j]=i;
}
}
}
for(int i=2; i<Max; i++)
{
if(i/mou[i]%mou[i]==0) mou[i]=0;
else mou[i]=-mou[i/mou[i]];
}
}
int main()
{
int t;
cin>>t;
init();
int kk=1;
while(t--)
{
cin>>a>>b>>c>>d>>k;
printf("Case %d: ",kk++);
if(k==0)
{
cout<<"0\n";
continue;
}
b/=k;
d/=k;
if(b > d)swap(b,d);
long long ans1 = 0;
for(int i = 1; i <= b; i++)
ans1 += (long long)mou[i]*(b/i)*(d/i);
long long ans2 = 0;
for(int i = 1; i <= b; i++)
ans2 += (long long)mou[i]*(b/i)*(b/i);
ans1 -= ans2/2;
cout<<ans1<<endl;
}
return 0;
}

hdu1695(莫比乌斯)或欧拉函数+容斥的更多相关文章

  1. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  3. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  4. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  5. HDU1695-GCD(数论-欧拉函数-容斥)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  6. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  7. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  8. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  9. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

随机推荐

  1. 使用Maven打包项目并上传到Linux服务器

    Maven打包: 项目右键Run as-->Maven build...-->  出来下面的界面,注意红色部分的填写,Goals填写package表示打包,下面的Skip Tests表示打 ...

  2. Linux 特殊符号使用: 倒引号`的使用

    Linux中有很多特殊符号,这里介绍 ` 倒引号的含义. 我们考虑下这个场景,有时我们需要将一个命令的执行结果赋值给某个变量,或者别的用途. 这时我们可以用两个`倒引号将该命令括起来. 例1: 如 e ...

  3. 一个Java程序的执行过程(转)

    我们手工执行java程序是这样的:  1.在记事本中或者是UE的文本编辑器中,写好源程序:  2.使用javac命令把源程序编译成.class文件:    编译后的.class(类字节码)文件中会包含 ...

  4. ACM比赛(第三次D)

    Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu Description 有三户人家共拥有 ...

  5. AOP编程

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  6. javascript获取页面各种高度

    网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽: document.body.offsetWi ...

  7. 四、Nginx负载均衡upstream

    user www; worker_processes ; error_log /usr/local/nginx/logs/error.log crit; pid /usr/local/nginx/lo ...

  8. java--equal&==

    [转自]http://blog.csdn.net/yiqunattack/article/details/5727143 [非常详细的介绍了string的用法http://blog.csdn.net/ ...

  9. linux c setitimer使用方法说明

    在linux c编程中.setitimer是一个比較经常使用的函数.可用来实现延时和定时的功能,网上有各种零零散散的使用方法说明,都仅仅提到了个别使用方法,今天抽出时间实践整理了一份比較具体的: 使用 ...

  10. 三家DirectUI的商业公司

    目前正在研究DirectUI技术,分享一点心得给大家.关于DirectUI技术的介绍我在这里就不说了,可以上Google查一下,非常丰富.目前使用DirectUI技术开发的软件产品原来原丰富,比如QQ ...