如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
1 Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
2 Redis支持数据的备份,即master-slave模式的数据备份。
3 Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。

在Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别(我个人是这么认为的)。

Redis只会缓存所有的key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。

同时由于Redis将内存中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个操作,直到子线程完成swap操作后才可以进行修改。

可以参考使用Redis特有内存模型前后的情况对比:

VM off: 300k keys, 4096 bytes values: 1.3G used
VM on: 300k keys, 4096 bytes values: 73M used
VM off: 1 million keys, 256 bytes values: 430.12M used
VM on: 1 million keys, 256 bytes values: 160.09M used
VM on: 1 million keys, values as large as you want, still: 160.09M used 

当从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行批量操作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。

redis、memcache、mongoDB 对比
从以下几个维度,对redis、memcache、mongoDB 做了对比,欢迎拍砖

1、性能
都比较高,性能对我们来说应该都不是瓶颈
总体来讲,TPS方面redis和memcache差不多,要大于mongodb

2、操作的便利性
memcache数据结构单一
redis丰富一些,数据操作方面,redis更好一些,较少的网络IO次数
mongodb支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富

3、内存空间的大小和数据量的大小
redis在2.0版本后增加了自己的VM特性,突破物理内存的限制;可以对key value设置过期时间(类似memcache)
memcache可以修改最大可用内存,采用LRU算法
mongoDB适合大数据量的存储,依赖操作系统VM做内存管理,吃内存也比较厉害,服务不要和别的服务在一起

4、可用性(单点问题)

对于单点问题,
redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制,因性能和效率问题,
所以单点问题比较复杂;不支持自动sharding,需要依赖程序设定一致hash 机制。
一种替代方案是,不用redis本身的复制机制,采用自己做主动复制(多份存储),或者改成增量复制的方式(需要自己实现),一致性问题和性能的权衡

Memcache本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的hash或者环状的算法,解决单点故障引起的抖动问题。

mongoDB支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制。

5、可靠性(持久化)

对于数据持久化和数据恢复,

redis支持(快照、AOF):依赖快照进行持久化,aof增强了可靠性的同时,对性能有所影响

memcache不支持,通常用在做缓存,提升性能;

MongoDB从1.8版本开始采用binlog方式支持持久化的可靠性

6、数据一致性(事务支持)

Memcache 在并发场景下,用cas保证一致性

redis事务支持比较弱,只能保证事务中的每个操作连续执行

mongoDB不支持事务

7、数据分析

mongoDB内置了数据分析的功能(mapreduce),其他不支持

8、应用场景
redis:数据量较小的更性能操作和运算上

memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写少,对于数据量比较大,可以采用sharding)

MongoDB:主要解决海量数据的访问效率问题

Redis和Memcached的区别【转】的更多相关文章

  1. Redis与Memcached的区别

    传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量 ...

  2. 也谈谈 Redis 和 Memcached 的区别

    本文作者: 伯乐在线 - 朱小厮 . 说到redis就会联想到memcached,反之亦然.了解过两者的同学有那么个大致的印象: redis与memcached相比,比仅支持简单的key-value数 ...

  3. 【转载】Redis与Memcached的区别

    传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量 ...

  4. (转)Redis与Memcached的区别

    如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点: 1 Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储. 2 Redis支持 ...

  5. Redis 与 Memcached 的区别

    [转]Redis 与 Memcached 的区别 传统 MySQL + Memcached 架构遇到的问题     实际上 MySQL 是适合进行海量数据存储的,通过 Memcached 将热点数据加 ...

  6. 好好耕耘 redis和memcached的区别

    观点一: 1.Redis和Memcache都是将数据存放在内存中,都是内存数据库.不过memcache还可用于缓存其他东西,例如图片.视频等等: 2.Redis不仅仅支持简单的k/v类型的数据,同时还 ...

  7. C#语法——泛型的多种应用 C#语法——await与async的正确打开方式 C#线程安全使用(五) C#语法——元组类型 好好耕耘 redis和memcached的区别

    C#语法——泛型的多种应用   本篇文章主要介绍泛型的应用. 泛型是.NET Framework 2.0 版类库就已经提供的语法,主要用于提高代码的可重用性.类型安全性和效率. 泛型的定义 下面定义了 ...

  8. REDIS与MEMCACHED的区别 8大点

    如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:1 Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储.2 Redis支持数据 ...

  9. REDIS与MEMCACHED的区别(转)

    出处:http://www.blogjava.net/paulwong/archive/2013/09/06/403746.html 如果简单地比较Redis与Memcached的区别,大多数都会得到 ...

随机推荐

  1. cuda8.0环境下安装py-faster-rcnn问题总结

    首先声明,由于之前安装的cuda8.0,在实践中出现各种问题,这里不是指安装环境问题,而是在训练模型是会阻止内核启动,因此让我不得不转战8.0,说出来都是泪啊,配个环境都配了一个礼拜了,所以,请不要轻 ...

  2. MarkDown初遇

    MarkDown初遇 纠结盘桓许久,由于那只胖纸,最终决定再次捡起博客这个东东,记录记录生活中.心灵里的点点滴滴. 寻觅的过程中忽然发现MarkDown这个东东,查了查,学习成本不高,简洁而标准,关键 ...

  3. java.lang.OutOfMemoryError异常解决方法

    原因:常见的有以下几种:1.内存中加载的数据量过于庞大,如一次从数据库取出过多数据:2.集合类中有对对象的引用,使用完后未清空,使得JVM不能回收:3.代码中存在死循环或循环产生过多重复的对象实体:4 ...

  4. Retrofit,Rxjava,OkHttp3的配置

    这几个库的版本都更新了,和以前的使用略有不同,这是两篇介绍的博客:http://www.jianshu.com/p/91ac13ed076d ,https://drakeet.me/retrofit- ...

  5. javascript中的事件处理

    事件处理:http://www.cnblogs.com/polk6/archive/2016/02/19/5154470.html#Menu2-DOMEventSpecification addEve ...

  6. Python之迭代器&装饰器&生成器&正则

    1.迭代器 迭代器是访问数据集合的一种方式,它只能从集合的第一个元素开始顺序访问,直到最后一个元素结束.类似于linux里的cat命令,只能挨行读取文本内容,不可以跳到中间或者尾部读取(不会把所有的数 ...

  7. vconfig 的使用

    http://man.cx/vconfig%288%29 vconfig 作用: (802.1q)VLAN配置程序 root@hbg:/# vconfig --helpBusyBox v1.22.1 ...

  8. jQuery执行进度提示窗口的实现(progressbar)

    使用jQuery原生插件,先看效果: 主要是progressbar的更新进度以及“请稍等”后省略号.倒计时关闭的效果 如果执行单个任务的时间较长,会导致浏览器假死,一定要使用异步,代码结构要稍作调整. ...

  9. 解决yum命令时出现Error: xz compression not available

    由于CentOS6的系统安装了epel-release-latest-7.noarch.rpm 导致在使用yum命令时出现Error: xz compression not available问题. ...

  10. LeetCode OJ 152. Maximum Product Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...