EM算法详解
EM算法详解
1 极大似然估计
假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么?
图1 学生成绩的分布
欲求在抽样X时,最优的μ和σ2参数估计,虽然模型的原型已知,但不同的参数对应着不同的学生成绩分布,其中一种最简单有效的参数估计方法就是估计的参数在目前抽样的数据上表现最好,即使得f(X|μ,σ2)的联合概率最大,这就是极大似然估计,常用L(μ,σ2|X)表示,满足公式(1)所示的关系。在实际计算中,对数函数是一个严格递增的函数,对似然函数取代数后,计算要简单很多,而且直接的似然函数计算中涉及大量浮点概率的乘法,容易导致计算机浮点计算精不够而出现机器0值,从而常用公式(2)的l(μ,σ2|X)来求极大似然估计,更普遍的如公式(3)所示。
余下的问题,就是求l(μ,σ2|X)的极大值的过程,即参数的一阶偏导为0的极值点,在此不详述了,可参看下图。
非常庆幸,对于正态分布来说,μ和σ2都能解析地直接求解,从而得到学生成绩满足何种正态分布。但实际情况是,许多应用模型中求解μ和σ2都十分困难。
2 隐含状态的极大似然估计
如第1节中所述,学生的单科成绩满足高斯分布f(x|μ,σ2),假设抽取的X是学生的语文和数学成绩,显然这样的成绩应该符合分布g(x|λ1,λ2,μ1,μ2,σ12,σ22),如公式(3)所示,两个混合的高斯分布,λ1,λ2分别表示f(x|μ1,σ12)和f(x|μ2,σ22)的在模型中的比率。
对于公式(5)所示的极大似然估计求解中,偏导的方程组,由于和的对数的数据,方程组的求解已经是神鬼难助了。
如果知道Xm={x1,x2,…,xm}属于语文成绩,Xelse={x1+m,x2+m,…,xn}属于数学成绩,g(x|θ)将变得极其简单,完全可以由第1节方法求解;如果知道μ1,μ2,σ12,σ22,求Xm和Xelse也很容易——鸡蛋困境?
接下来详述的EM(Expectation Maximization, EM)算法解决的就是这个鸡蛋困境,不管是先有鸡还是先有蛋,最终命运都会被享用。
3 EM算法
在此先将问题抽象,已知模型为p(x|θ),X=(x1,x2,…,xn),求θ。引入隐含变量Z=(z1,z2,…,zn),使得模型满足公式(6)或公式(7)的关系。由第1节的极大似然估计有,l(θ)满足公式(8)。
和很多求极值的算法一样(NN的BP算法),EM算法也是通过迭代计算l(θ) 的极值的。假设第n轮迭代计算出的
θ为θn,在新的迭代中,最简单的想法就是新的θ要优于θn即可,有l(θ)-l(θn)如下所示。如公式(9)描述,计算的的难度主要在于log函数中的求和,为解决这个问题和找到l(θ)-l(θn)的下界值,引入Jensen不等式。

函数的凹凸性与Jensen不等式:
如果f(x)为凸函数,f(x)满足公式(10)的关系,具体证明不述,紧述的函数图就明了地描绘了这种关系。更一般地说,f(x)满足公式(11)中的关系,证明可由公式(10)导出,称为Jensen不等式。
![]()
至于什么是凸函数,f(x)的二阶偏导恒大于(或等于)0,如果x为高维向量,hessian矩阵必须(半)正定,凹函数属性相对。
而f(x)=log(x), f’’=-1/x2<0 就为一个典型的凹函数,满足关系(11)。
公式(9)中的l(θ)-l(θn)满足如下关系:
进而有:

图2 l(θ)和φ(θn,θ)关系图
可见l(θ)的下界为φ(θn,θ),φ(θn,θ)值越大, l(θ)的下界也将越大(其中的θn为已知变量),具体l(θ)和φ(θn,θ)的关系可从图2可看出:φ(θn,θ)增长的方向也是l(θ)增长的方向,也就是任意增长φ(θn,θ)值的θ,都将使l(θ)下界增大,从而迭代使l(θ)逼近理想值。当然,在此最好的φ(θn,θ)值的θ便是,max(φ(θn,θ))处的θ,计算如下:
这样,迭代求θ的方法就显而易见了:
随机初始化θ0。
1、求条件期望F(θ,θn),如上公共所示;
2、求F(θ,θn)的极值处θn+1。
3、反复迭代1,2计算,直到θn收敛,即|θn+1-θn|<α(收敛条件)。
这样,EM算法就完全解决了鸡和蛋的问题了,至于初始化条件可以是鸡(θ0),也可以是蛋(z0)。
PS:EM算法的敛散性,由计算中的下界迭代,可很清晰的看到,EM算法收敛,但可能收敛于局部最优解,证明不述。
4 缺失数据问题
可以说EM算法天生就是用来解决缺失数据的问题的,将第3节的隐变量z看成是数据中缺失的数据即可。
在完全数据X(无缺失数据)下,知模型为f(x|θ),求数据满足何种模型?这可以由第1节的极大似然估计求解;如果采样数据存在部分未知Z,预测这些含未知的数据的数据符何什么模型?这就可借用第3节的EM算法了,先随机假设θ0,迭代求解,最后求知f(x|θ),当然也就可出了z。
5 高斯混合模型
暂不述,直接为EM算法的应用。
参考资料:
1、Sean Borman. The Expectation Maximization Algorithm;
2、李航. 统计学习方法;
3、虞台文. EM Algorithm.
对于同仁们的布道授业,一并感谢。
----
EM算法详解的更多相关文章
- Weka中EM算法详解
private void EM_Init (Instances inst) throws Exception { int i, j, k; // 由于EM算法对初始值较敏感,故选择run k mean ...
- 从最大似然函数 到 EM算法详解
极大似然算法 本来打算把别人讲的好的博文放在上面的,但是感觉那个适合看着玩,我看过之后感觉懂了,然后实际应用就不会了.... MLP其实就是用来求模型参数的,核心就是“模型已知,求取参数”,模型的意思 ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- 【转】AC算法详解
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
- 从最大似然到EM算法浅解
从最大似然到EM算法浅解 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习十大算法之中的一个:EM算法.能评得上十大之中的一个,让人听起来认为挺NB的. ...
随机推荐
- Mac OS下SVN的使用:服务的和客户端
在Windows环境中,我们一般使用TortoiseSVN来搭建svn环境.在Mac环境下,由于Mac自带了svn的服务器端和客户端功能,所以我们可以在不装任何第三方软件的前提下使用svn功能,不过还 ...
- NGUI使用教程(2) 使用NGUI创建2D场景而且加入标签和button
1.创建2D场景 要使用NGUI创建2D场景,首先咱们必须新建一个项目,而且导入NGUI作为这个项目的插件,相信假设看过上一篇教程都知道怎么导入NGUI了,这里就不赘述,假设有疑问的能够去看上一篇教程 ...
- HDU 3094 A tree game 树删边游戏
叶节点SG值至0 非叶节点SG值至于它的所有子节点SG值添加1 XOR和后 #include <cstdio> #include <cstring> #include < ...
- 如何实现TWaver 3D颜色渐变
一般而言,须要实现3D物体的渐变,通常的思路就是通过2D绘制一张渐变canvas图片作为3D对象的贴图.这样的方式是能够解决这类问题的.只是对于一般用户而言,通过2D生成一张渐变的图片.有一定的难度, ...
- 萧墙HTML5手机发展之路(53)——jQueryMobile页面之间的参数传递
基于单个页面模板HTTP通过路POST和GET请求传递参数.在多页模板,并且不需要server沟通,通常有三种方式在多页模板来实现页面之间的参数传递. 1.GET道路:上一页页生成参数并传递到下一个页 ...
- Oracleclient+PLSQL Developer实现远程登录Oracle数据库
Oracle数据库功能强大.性能卓越,在造就这些长处的同一时候,也导致Oracle占内存比較多.针对这个问题,我们怎样做到取其精华去其糟粕呢? 解决方式:我们能够在局域网内的server上安装庞大的O ...
- [译]Java 垃圾回收的监控和分析
说明:这篇文章来翻译来自于Javapapers 的Java Garbage Collection Monitoring and Analysi 在这个系列的Java垃圾回收教程中,我们将看到可用于垃圾 ...
- POJ 3602 Typographical Ligatures
[题意简述]:题意就是输入一串字符串,问我们有多少种不同的字符,也就是说出现过一次的字符,下次就不记到种数中了,特别的有 ff, fi ,fl ,ffi ,ffl,'',``, 这几个每一个算是一种 ...
- JavaScript语言基础知识8
这篇文章是对前面学习的知识进行总结: 1.JavaScript支持多种数据类型,如数值类型.字符串类型.布尔类型等. 2.在JavaScript中,字符串是用引號括起来的字符系列,转义字符能够用来表示 ...
- vue实现ajax滚动下拉加载,同时具有loading效果
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
至于什么是凸函数,f(x)的二阶偏导恒大于(或等于)0,如果x为高维向量,hessian矩阵必须(半)正定,凹函数属性相对。