1798: [Ahoi2009]Seq 维护序列seq

Time Limit: 30 Sec  Memory Limit: 64 MB
Submit: 2930  Solved: 1087
[Submit][Status]

Description

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。

Input

第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

Output

对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。

Sample Input

7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7

Sample Output

2
35
8

HINT

【样例说明】

初始时数列为(1,2,3,4,5,6,7)。
经过第1次操作后,数列为(1,10,15,20,25,6,7)。
对第2次操作,和为10+15+20=45,模43的结果是2。
经过第3次操作后,数列为(1,10,24,29,34,15,16}
对第4次操作,和为1+10+24=35,模43的结果是35。
对第5次操作,和为29+34+15+16=94,模43的结果是8。

测试数据规模如下表所示

数据编号 1 2 3 4 5 6 7 8 9 10
N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000

Source

Day1

题解:涉及到区间加法和乘法的线段树呵呵呵。。。虽然不难但是我已经被其折腾了一年了。。。。还好AC了

个人觉得重点在于对于一个线段,当需要改变这个线段的一部分时,这个线段上的总和值该如何维护的问题,直到今天我方才想出了一个机智的方法——既然直接维护比较讨厌,那么何不在下面方便维护的点直接维护,然后将各个子线段的变化量累计起来,不就是此线段的变化量了么。。。呵呵呵(phile:今天才明白? HansBug:TT)

 type
vet=record
a0,a1:int64;
end;
var
i,j,k,l,m,n,a2,a3,a4:longint;
p:int64;
d1,d2,d:vet;
a,c:array[..] of int64;
b:array[..] of vet;
function min(x,y:longint):longint;inline;
begin
if x<y then min:=x else min:=y;
end;
function max(x,y:longint):longint;inline;
begin
if x>y then max:=x else max:=y;
end;
function merge(d1,d2:vet):vet;inline;
var d3:vet;
begin
d3:=d1;
d3.a0:=d3.a0 mod p;
d3.a1:=d3.a1 mod p;
d2.a0:=d2.a0 mod p;
d2.a1:=d2.a1 mod p;
d3.a0:=(d3.a0*d2.a0) mod p;
d3.a1:=((d3.a1*d2.a0) mod p+d2.a1) mod p;
exit(d3);
end;
procedure built(z,x,y:longint);inline;
begin
if (x=y) then
a[z]:=c[x] mod p
else
begin
built(z*,x,(x+y) div );
built(z*+,(x+y) div +,y);
a[z]:=(a[z*]+a[z*+]) mod p;
end;
b[z].a0:=;b[z].a1:=;
end;
procedure ext(z,x,y:longint);inline;
begin
a[z]:=((a[z]*b[z].a0) mod p+b[z].a1*(y-x+)) mod p;
b[z*]:=merge(b[z*],b[z]);
b[z*+]:=merge(b[z*+],b[z]);
b[z].a0:=;b[z].a1:=;
end;
function op(z,x,y,l,r:longint;d:vet):int64;inline;
var a2,a3,a4:int64;
begin
if l>r then exit();
ext(z,x,y);a2:=a[z];
if (x=l) and (y=r) then
begin
b[z]:=d;
exit((a2*(b[z].a0-)) mod p+(b[z].a1*(r-l+)) mod p);
end
else
begin
a3:=op(z*,x,(x+y) div ,l,min((x+y) div ,r),d) mod p;
a4:=op(z*+,(x+y) div +,y,max((x+y) div +,l),r,d) mod p;
a[z]:=(a[z]+(a3+a4) mod p) mod p;exit((a3+a4) mod p);
end;
end;
function sum(z,x,y,l,r:longint;d:vet):int64;inline;
var d1,d2:vet;
begin
if l>r then exit();
d1:=b[z];d1:=merge(d1,d);;
if (x=l) and (y=r) then
exit(((d1.a0*a[z]) mod p+(d1.a1*(r-l+)) mod p) mod p)
else
exit((sum(z*,x,(x+y) div ,l,min((x+y) div ,r),d1)+sum(z*+,(x+y) div +,y,max((x+y) div +,l),r,d1)) mod p);
end;
procedure showoff(z,x,y,l:longint);inline;
begin
writeln('':l*,z,'(',x,',',y,') = Tag=(',b[z].a0,',',b[z].a1,') ',a[z]);
if x<y then
begin
showoff(z*,x,(x+y) div ,l+);
showoff(z*+,(x+y) div +,y,l+);
end;
end;
begin
readln(n,p);
for i:= to n do read(c[i]);
readln;
built(,,n);
readln(m);
for i:= to m do
begin
read(j);
case j of
:begin
readln(a2,a3,a4);
d1.a0:=a4;d1.a1:=;
op(,,n,a2,a3,d1);
end;
:begin
readln(a2,a3,a4);
d1.a0:=;d1.a1:=a4;
op(,,n,a2,a3,d1);
end;
:begin
readln(a2,a3);
d1.a0:=;d1.a1:=;
writeln((sum(,,n,a2,a3,d1)+p) mod p);
end;
end;
end;
readln;
end.

1798: [Ahoi2009]Seq 维护序列seq的更多相关文章

  1. BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )

    线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...

  2. bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7773  Solved: 2792[Submit ...

  3. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  4. Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...

  5. BZOJ1798: [Ahoi2009]Seq 维护序列seq[线段树]

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 5504  Solved: 1937[Submit ...

  6. 【BZOJ】1798: [Ahoi2009]Seq 维护序列seq

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 大概就是维护两个标记的线段树模板题. 设定优先级,先乘后加(只是相对的),$push ...

  7. 【BZOJ】1798: [Ahoi2009]Seq 维护序列seq(线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1798 之前写了个快速乘..........................20多s...... 还好 ...

  8. bzoj 1798 [Ahoi2009]Seq 维护序列seq(线段树+传标)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1798 [题意] 给定一个序列,要求提供区间乘/加,以及区间求和的操作 [思路] 线段树 ...

  9. AC日记——[Ahoi2009]Seq 维护序列seq bzoj 1798

    1798 思路: 维护两个标记: 乘:m  和  加:a 先下放乘,再下放加: 下放乘的时候要把子节点的加一块乘了: 开long long: 来,上代码: #include <cstdio> ...

随机推荐

  1. CSS的position设置

    CSS的position设置: <%@ page language="java" contentType="text/html; charset=UTF-8&quo ...

  2. #DP# ----- OpenJudge最大子矩阵

    OpenJudge 1768:最大子矩阵 总时间限制: 1000ms   内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 ...

  3. 走进React

    走进React React是一个构建用户界面的JavaScript库,是Facebook公司在2013年5月在github上开源的.其特点如下: 高效--React通过对DOM的模拟,最大程度地减少和 ...

  4. php扩展SeasLog应用于 yii2 组件

    一.seaslog 简单介绍及使用原因 它是C 写的PHP扩展,性能很高,使用简单,能满足大部分简单的日志需求.(个人感觉) 其他优势请看-->https://github.com/Neeke/ ...

  5. Raft 实现日志复制同步

    Raft 实现日志复制同步 本篇文章以 John Ousterhout(斯坦福大学教授) 和 Diego Ongaro(斯坦福大学获得博士学位,Raft算法发明人) 在 Youtube 上的讲解视频及 ...

  6. [转载] ping和telnet的区别

    转载自:http://www.cnblogs.com/Jtianlin/p/4045021.html windown7下打开telnet功能: 控制面板 --- > 程序(小图标下直接到[程序和 ...

  7. 获取Pid

    Java程序中获取当前进程的进程ID 标签: javainterfacesystemcompilationjvmjni 2011-12-29 16:31 15182人阅读 评论(2) 收藏 举报  分 ...

  8. oracle__wm_concat函数

    首先让我们来看看这个神奇的函数wm_concat(列名),该函数可以把列值以","号分隔起来,并显示成一行,接下来上例子,看看这个神奇的函数如何应用 准备测试数据 SQL> ...

  9. UINavigationController实现全屏滑动返回功能

    说明: UINavigationController默认在push出的控制器中都有边沿滑动返回功能,但是只能从屏幕左边滑才能返回,若从屏幕中间画并没有效果.下面实现全屏滑动功能. 探究: 系统默认能够 ...

  10. shell编程其实真的很简单(五)

    通过前几篇文章的学习,我们学会了shell的基本语法.在linux的实际操作中,我们经常看到命令会有很多参数,例如:ls -al 等等,那么这个参数是怎么处理的呢? 接下来我们就来看看shell脚本对 ...