3101: N皇后
3101: N皇后
Time Limit: 10 Sec Memory Limit: 128 MBSec Special Judge
Submit: 88 Solved: 41
[Submit][Status][Discuss]
Description
n*n的棋盘,在上面摆下n个皇后,使其两两间不能相互攻击…
Input
一个数n
Output
第i行表示在第i行第几列放置皇后
Sample Input
Sample Output
4
1
3
HINT
100%的数据3<n<1000000。输出任意一种合法解即可
Source
题解:一道神(dou)奇(bi)的题目,传说中貌似有种O(N)构造N皇后解的方法,具体为啥貌似也查不到,求神犇给出证明orzorzorz(引自N皇后的构造解法)
一、当n mod 6 != 2 或 n mod 6 != 3时,有一个解为:
2,4,6,8,...,n,1,3,5,7,...,n-1 (n为偶数)
2,4,6,8,...,n-1,1,3,5,7,...,n (n为奇数)
(上面序列第i个数为ai,表示在第i行ai列放一个皇后;... 省略的序列中,相邻两数以2递增。下同)
二、当n mod 6 == 2 或 n mod 6 == 3时,
(当n为偶数,k=n/2;当n为奇数,k=(n-1)/2)
k,k+2,k+4,...,n,2,4,...,k-2,k+3,k+5,...,n-1,1,3,5,...,k+1 (k为偶数,n为偶数)
k,k+2,k+4,...,n-1,2,4,...,k-2,k+3,k+5,...,n-2,1,3,5,...,k+1,n (k为偶数,n为奇数)
k,k+2,k+4,...,n-1,1,3,5,...,k-2,k+3,...,n,2,4,...,k+1 (k为奇数,n为偶数)
k,k+2,k+4,...,n-2,1,3,5,...,k-2,k+3,...,n-1,2,4,...,k+1,n (k为奇数,n为奇数)
然后就是码代码了= =
/**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ var
i,j,k,l,m,n:longint;
begin
readln(n);
case n mod of
,:begin
k:=n div ;
case (k mod )+(n mod )* of
:begin
for i:= to (n-k) div do writeln(k+i*);
for i:= to (k-) div do writeln(+i*);
for i:= to (n-k-) div do writeln(k++i*);
for i:= to k div do writeln(+*i);
end;
:begin
for i:= to (n-k-) div do writeln(k+i*);
for i:= to (k-) div do writeln(+i*);
for i:= to (n-k-) div do writeln(k++i*);
for i:= to k div do writeln(+*i);
writeln(n);
end;
:begin
for i:= to (n-k-) div do writeln(k+i*);
for i:= to (k-) div do writeln(+i*);
for i:= to (n-k-) div do writeln(k++i*);
for i:= to (k-) div do writeln(+*i);
end;
:begin
for i:= to (n-k-) div do writeln(k+i*);
for i:= to (k-) div do writeln(+i*);
for i:= to (n-k-) div do writeln(k++i*);
for i:= to (k-) div do writeln(+*i);
writeln(n);
end;
end;
end;
else begin
if odd(n) then
begin
for i:= to (n-) div do writeln(i*);
for i:= to (n+) div do writeln(i*-);
end
else
begin
for i:= to n div do writeln(i*);
for i:= to n div do writeln(i*-);
end;
end;
end;
readln;
end.
3101: N皇后的更多相关文章
- BZOJ 3101: N皇后
3101: N皇后 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 178 Solved: 94[Submit][ ...
- BZOJ 3101: N皇后 构造
3101: N皇后 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3101 Description n*n的棋盘,在上面摆下n个皇后,使其 ...
- bzoj 3101 N皇后构造一种解 数学
3101: N皇后 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 70 Solved: 32[Submit][S ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 递归实现n(经典的8皇后问题)皇后的问题
问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...
- 八皇后算法的另一种实现(c#版本)
八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...
- [LeetCode] N-Queens II N皇后问题之二
Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...
- [LeetCode] N-Queens N皇后问题
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- N皇后问题—初级回溯
N皇后问题,最基础的回溯问题之一,题意简单N*N的正方形格子上放置N个皇后,任意两个皇后不能出现在同一条直线或者斜线上,求不同N对应的解. 提要:N>13时,数量庞大,初级回溯只能保证在N< ...
随机推荐
- C# 编写通用的JSON数据进行序列化和反序列化
注意事项:使用JSON系列化和反系列化,必须要添加引用System.Runtime.Serialization. 1.通用类代码如下: /// <summary> /// JSON序 ...
- Winform ListView的用法
清除数据: lvOrder.Items.Clear(); 赋值数据: if (lvList.Count != 0) { foreach (var item in lvList) { string[] ...
- canvas动态小球重叠效果
前面的话 在javascript运动系列中,详细介绍了各种运动,其中就包括碰壁运动.但是,如果用canvas去实现,却是另一种思路.本文将详细介绍canvas动态小球重叠效果 效果展示 静态小球 首先 ...
- vue.js学习第一节
<div id="app" class="app"> <p>{{ message }}</p> <p>{{ in ...
- FindPkgConfig----CMake的pkg-config模块
FindPkgConfig A pkg-config module for CMake. CMake的pkg-config模块. Finds the pkg-config executable and ...
- CSS3知识点整理(二)----CSS3选择器
总结各种CSS3选择器的介绍及具体语法 (一)属性选择器 在CSS2中引入了一些属性选择器,而CSS3在CSS2的基础上对属性选择器进行了扩展,新增了3个属性选择器,使得属性选择器有了通配符的概念,这 ...
- C语言 二维数组复制、清零及打印显示
#include <stdlib.h> #include <stdio.h> #include <string.h> //二维整型数组打印显示 ],int row, ...
- java 文件操作 读取txt文本(兄弟常开心)
测试一下读取文本的另一种方法:该方法只使用一个类读取了文件 注意:buffer和read方法中读取指定长度的一致 package com.swust; import java.io.*; /* * 数 ...
- Java面向对象知识点
对象:一切客观存在的事物都是对象 语法部分: 类的概念:1.类是对象的抽象 2.类是客观事物在人脑中的主观反应 3.类是对象的模板 类的设计: 属性:定义位置:类以内,方法以外 实例变量:1 有默认值 ...
- 原生js实现轮播图
原生js实现轮播图 很多网站上都有轮播图,但找到一个系统讲解的却很难,因此这里做一个简单的介绍,希望大家都能有所收获,如果有哪些不正确的地方,希望大家可以指出. 原理: 将一些图片在一行中平铺,然后计 ...