两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

就是一个exgcd板题 关键在于推公式
exgcd就是用特解求全部解 找出一个特殊情况就好了
注意答案为负数的情况
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; LL gcd(LL a, LL b)
{
return b == ? a : gcd(b, a % b);
} LL exgcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
} int main()
{
LL a, b, d, x, y;
LL _x, _y, m, n, l;
cin >> _x >> _y >> m >> n >> l;
if((_x - _y) % gcd(l, n - m)) return puts("Impossible");
exgcd(n - m, l, d, x, y);
x *= (_x - _y) / d;
x = (x % l + l) % l;
cout << x << endl; return ;
}

青蛙的约会 POJ - 1061 (exgcd)的更多相关文章

  1. AC日记——青蛙的约会 poj 1061

    青蛙的约会 POJ - 1061   思路: 扩展欧几里得: 设青蛙们要跳k步,我们可以得出式子 m*k+a≡n*k+b(mod l) 式子变形得到 m*k+a-n*k-b=t*l (m-n)*k-t ...

  2. 青蛙的约会 poj 1061

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 86640   Accepted: 15232 Descripti ...

  3. 青蛙的约会 - poj 1061(扩展欧几里得)

    分析:这个东西在数论里面应该叫做不定方程式,可以搜一下,有很精彩的证明,先求出来方程式的一组特解,然后用这组特解来求通解,但是求出来特解之后怎么求这些解里面的最小非负x值?我们知道 x = x0 + ...

  4. C - 青蛙的约会 POJ - 1061 (扩展欧几里得)

    题目链接:https://cn.vjudge.net/contest/276376#problem/C 题目大意:中文题目. 具体思路:扩展gcd,具体证明过程看图片(就这麽个题我搞了一天,,,). ...

  5. Day7 - H - 青蛙的约会 POJ - 1061

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  6. POJ 1061 青蛙的约会 | 同余方程和exGcd

    题解: 要求s+px=t+qx (mod L) 移项 (p-q)x=t-s (mod L) 等价于 (p-q)x+Ly=t-s 即ax+by=c的方程最小非负根 exGcd后乘个C #include& ...

  7. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  8. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  9. POJ.1061 青蛙的约会 (拓展欧几里得)

    POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...

随机推荐

  1. Jquery遍历之获取子级元素、同级元素和父级元素

    Jquery遍历之获取子级元素.同级元素和父级元素 Jquery的遍历,其实就当前位置的元素相对于其他元素的位置的关系进行查找或选取HTML元素.以某项选择开始,并沿着这条线进行移动,或向上(父级). ...

  2. 十二、存token获取token刷新token发送header头

    //测试token //获取token function setToken(data){ var storage = window.localStorage; if(!storage){ alert( ...

  3. l^oo不可分的两个注意点

    1  不理解等一个等式 , 2.不理解为什么,一个可分的集合里面有不可数的子集?谢谢 1是 2.是可分集合里面每个元素 做中心后的一个开覆盖 所有0 1序列是和所有二进制小数   可以一一对应   而 ...

  4. 在layui中使用ajax不起作用

    又是一个坑,坑了我一个下午.在layui插件中使用jquery的ajax请求,一点反应都没有,不管是改成get还是post请求,后台毫无反应,前端谷歌调试也没有报半点错. js代码如下: layui. ...

  5. CRM/PLM/SCM/MES与ERP的联系与区别

    企业通过专设信息机构.信息主管,配备适应现代企业管理运营要求的自动化.智能化.高技术硬件.软件.设备.设施,建立包括网络.数据库和各类信息管理系统在内的工作平台,提高企业经营管理效率的发展模式. 那么 ...

  6. 前端开发之css

    <!--页面中的组成部分通常随便打开一个网页,有文字,图片,视频,表格,音频,表单(注册信息) css 属性/尺寸/边框/背景 1.css的尺寸属性,就是大小width max-width mi ...

  7. combineByKey

    示例:

  8. ubuntu18.04 安装 php7.2

    sudo apt-get install software-properties-common python-software-properties sudo add-apt-repository p ...

  9. linux redis服务安装

    redis下载 官网地址:https://redis.io/download 在Linux下安装Redis非常简单,具体步骤如下(官网有说明): 1.下载源码,解压缩后编译源码. $ wget htt ...

  10. web攻擊

    一.dos攻擊 向服務器發送數量龐大的合法數據,讓服務器分不清是不是正常請求,導致服務器接收所有的請求.海量的數據請求會使得服務器停止服務和拒絕服務. 防禦:阿里云或其它資源服務器有專門web應用防火 ...