https://www.cnblogs.com/HocRiser/p/8207295.html 安利!

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 998244353
#define N 550000
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,a[N],r[N],b[N],c[N],d[N],A[N],B[N],t;
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-2);}
void DFT(int n,int *a,int g)
{
for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1);
for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=2;i<=n;i<<=1)
{
int wn=ksm(g,(P-1)/i);
for (int j=0;j<n;j+=i)
{
int w=1;
for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>1)]%P;
a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P;
}
}
}
}
void IDFT(int *a,int n)
{
DFT(n,a,inv(3));
int u=inv(n);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*u%P;
}
void mul(int *a,int *b,int n)
{
DFT(n,a,3),DFT(n,b,3);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
IDFT(a,n);
}
void Inv(int *a,int *b,int n)
{
if (n==1) {for (int i=0;i<t;i++) b[i]=0;b[0]=inv(a[0]);return;}
Inv(a,b,n>>1);
for (int i=0;i<n;i++) A[i]=a[i];
for (int i=n;i<(n<<1);i++) A[i]=0;
n<<=1;
DFT(n,A,3),DFT(n,b,3);
for (int i=0;i<n;i++) b[i]=1ll*b[i]*(P+2-1ll*A[i]*b[i]%P)%P;
IDFT(b,n);
n>>=1;
for (int i=n;i<(n<<1);i++) b[i]=0;
}
void trans(int *a,int *b,int n){for (int i=0;i<n-1;i++) b[i]=1ll*a[i+1]*(i+1)%P;}
void dx(int *a,int *b,int n){b[0]=0;for (int i=1;i<n;i++) b[i]=1ll*a[i-1]*inv(i)%P;}
void Ln(int *a,int t)
{
for (int i=0;i<t;i++) b[i]=c[i]=0;
trans(a,c,t>>1);
Inv(a,b,t>>1);
mul(c,b,t);
dx(c,a,t);
}
void Exp(int *a,int *b,int n)
{
if (n==1) {b[0]=1;return;}
Exp(a,b,n>>1);
for (int i=0;i<(n>>1);i++) B[i]=b[i];
for (int i=(n>>1);i<n;i++) B[i]=0;
Ln(B,n);
for (int i=0;i<n;i++) B[i]=(a[i]-B[i]+P)%P;
B[0]=(B[0]+1)%P;
for (int i=n;i<(n<<1);i++) B[i]=0;
mul(b,B,n<<1);
for (int i=n;i<(n<<1);i++) b[i]=0;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ln.in","r",stdin);
freopen("ln.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=0;i<n;i++) a[i]=read();
t=1;while (t<=(n<<1)) t<<=1;
Exp(a,d,t);
for (int i=0;i<n;i++) printf("%d ",d[i]);
return 0;
}
//ln(F(x))=G(x)
//ln(F(x))'=G(x)'
//F(x)'/F(x)=G(x)'
//G(x)=dx(F(x)'/F(x)) //exp(F(x))=G(x)
//F(x)=ln(G(x))
//ln(G(x))-F(x)=0
//H(G(x))=ln(G(x))-F(x)
//G1(x)=G0(x)-H(G0(x))/H(G0(x))'
//G1(x)=[F(x)+1-ln(G0(x))]*G0(x)

  

Luogu4726 【模板】多项式指数函数(NTT+多项式求逆)的更多相关文章

  1. luoguP4512 【模板】多项式除法 NTT+多项式求逆+多项式除法

    Code: #include<bits/stdc++.h> #define maxn 300000 #define ll long long #define MOD 998244353 # ...

  2. [模板]多项式全家桶小记(求逆,开根,ln,exp)

    前言 这里的全家桶目前只包括了\(ln,exp,sqrt\).还有一些类似于带余数模,快速幂之类用的比较少的有时间再更,\(NTT\)这种前置知识这里不多说. 还有一些基本的导数和微积分内容要了解,建 ...

  3. [BZOJ3625][CF438E]小朋友和二叉树 (多项式开根,求逆)

    题面 题解 设多项式的第a项为权值和为a的二叉树个数,多项式的第a项表示是否为真,即 则,所以F是三个多项式的卷积,其中包括自己: ,1是F的常数项,即. 我们发现这是一个一元二次方程,可以求出,因为 ...

  4. JZYZOJ 2042 多项式逆元 NTT 多项式

    http://172.20.6.3/Problem_Show.asp?id=2042 题意:求一个次数界为n的多项式在模P并模x^m的意义下的逆元.P=7*17*2^23+1. 多项式逆元的含义以及求 ...

  5. BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

    生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...

  6. bzoj 3625: [Codeforces Round #250]小朋友和二叉树【NTT+多项式开根求逆】

    参考:https://www.cnblogs.com/2016gdgzoi509/p/8999460.html 列出生成函数方程,g(x)是价值x的个数 \[ f(x)=g(x)*f^2(x)+1 \ ...

  7. luoguP4238 【模板】多项式求逆 NTT

    Code: #include <bits/stdc++.h> #define N 1000010 #define mod 998244353 #define setIO(s) freope ...

  8. [模板][P4238]多项式求逆

    NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...

  9. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

  10. 【知识总结】多项式全家桶(一)(NTT、加减乘除和求逆)

    我这种数学一窍不通的菜鸡终于开始学多项式全家桶了-- 必须要会的前置技能:FFT(不会?戳我:[知识总结]快速傅里叶变换(FFT)) 以下无特殊说明的情况下,多项式的长度指多项式最高次项的次数加\(1 ...

随机推荐

  1. k8s

    https://www.cnblogs.com/sheng-jie/p/10591794.html

  2. ASP.Net Core2.1中的HttpClientFactory系列一:HttpClient的缺陷

    引言: ASP.NET Core2.1 中出现了一个新的 HttpClientFactory 功能, 它有助于解决开发人员在使用 HttpClient 实例从其应用程序中访问外部 web 资源时可能遇 ...

  3. Python全栈开发之路 【第十八篇】:Ajax技术

    Ajax技术 Ajax = 异步 JavaScript 和 XML. Ajax 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. 1.jQuery的load()方法 jQuery loa ...

  4. python四:函数练习--小白博客

    为什么要有函数?函数式编程定义一次,多出调用函数在一定程度上可以理解为变量函数的内存地址加上()就是调用函数本身也可以当做参数去传参 不用函数:组织结构不清晰代码的重复性 def test():#te ...

  5. Baby Coins

    题意 描述 Baby 今天清点自己的百宝箱啦,箱子里有n 种硬币,硬币的面值分别是:val[1],val[2],...,val[n],每种面值的硬币都恰好有2 个. Baby 实在闲的太无聊了,他想从 ...

  6. 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题

    Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...

  7. Misha, Grisha and Underground CodeForces - 832D (倍增树上求LCA)

    Misha and Grisha are funny boys, so they like to use new underground. The underground has n stations ...

  8. oc之证书

    https://www.cnblogs.com/MrJalen/p/6813309.html iOS推送证书生成pem文件(详细步骤)   1.pem文件概述 pem文件是服务器向苹果服务器做推送时候 ...

  9. 【转】linux if 判断

    UNIX Shell 里面比较字符写法: -eq   等于-ne    不等于-gt    大于-lt    小于-le    小于等于-ge   大于等于-z 空串=    两个字符相等!=    ...

  10. js this的含义以及讲解

    this关键字是一个非常重要的语法点.毫不夸张地说,不理解它的含义,大部分开发任务都无法完成. 首先,this总是返回一个对象,简单说,就是返回属性或方法“当前”所在的对象. 下面来两个例子来让大家更 ...