题意:给出b 求lcm(a,b)/a 在b从1-1e18有多少个不同得结果

思路lcm*gcd=a*b  转换成    b/gcd(a,b)

也就是看gcd(a,b)有多少个值  可以把b 由唯一分解定理 分解一下    然后组合一下各个因子就是由多少种了

注意: 因为唯一分解定律都是素数   思考一下可以 知道  不可能有两种不同的组合方式得到同一个 结果 所以可以放心得用

#include<bits/stdc++.h>
using namespace std;
const int maxn=100000;
long long prime[maxn],vis[maxn*10];
long long k=0;
void prime1(){
memset(vis,0,sizeof(vis)); for(long long i=2;i<=maxn;i++)if(!vis[i]){
prime[k++]=i;
for(long long j=i*i;j<=maxn;j+=i)vis[j]=1;
}
}
int main(){
long long b;
prime1();
cin>>b;
long long z=b;
long long ans=0;
long long sum=1;
for(long long i=0;i<k&&prime[i]*prime[i]<=z;i++){
ans=0;
while(b%prime[i]==0){
ans++;
b/=prime[i];
}
sum*=(ans+1);
}
if(b>1)sum*=(1+1);
cout<<sum<<endl;
return 0;
}

  

Codeforces Round #518 (Div. 2) B. LCM gcd+唯一分解定律的更多相关文章

  1. Codeforces Round #518 (Div. 2) B LCM

    传送门 https://www.cnblogs.com/violet-acmer/p/10163375.html 题解: 这道题有点意思,有点数学的味道. 根据定义“[a,b] / a”可得这求得是l ...

  2. Codeforces Round #518 (Div. 2) [Thanks, Mail.Ru!]

    Codeforces Round #518 (Div. 2) [Thanks, Mail.Ru!] https://codeforces.com/contest/1068 A #include< ...

  3. Codeforces Round #146 (Div. 1) A. LCM Challenge 水题

    A. LCM Challenge 题目连接: http://www.codeforces.com/contest/235/problem/A Description Some days ago, I ...

  4. Codeforces Round #554 (Div. 2)-C(gcd应用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...

  5. Codeforces Round #347 (Div.2)_A. Complicated GCD

    题目链接:http://codeforces.com/contest/664/problem/A A. Complicated GCD time limit per test 1 second mem ...

  6. Codeforces Round #511 (Div. 2)-C - Enlarge GCD (素数筛)

    传送门:http://codeforces.com/contest/1047/problem/C 题意: 给定n个数,问最少要去掉几个数,使得剩下的数gcd 大于原来n个数的gcd值. 思路: 自己一 ...

  7. Codeforces Round #651 (Div. 2) A. Maximum GCD(数论)

    题目链接:https://codeforces.com/contest/1370/problem/A 题意 有 $n$ 个数大小分别为 $1$ 到 $n$,找出两个数间最大的 $gcd$ . 题解 若 ...

  8. Codeforces Round #691 (Div. 2) C. Row GCD (数学)

    题意:给你两个数组\(a\)和\(b\),对于\(j=1,...,m\),找出\(a_1+b_j,...,a_n+b_j\)的\(gcd\). 题解:我们很容易的得出\(gcd\)的一个性质:\(gc ...

  9. Codeforces Round #207 (Div. 1) B (gcd的巧妙运用)

    比赛的时候不知道怎么写... 太弱了. 看了别人的代码,觉得这个是个经典的知识点吧. gcd的巧妙运用 自己想的时候苦苦思考怎么用dp求解. 无奈字符串太长而想不出好的算法. 其实在把a和b字符串都分 ...

随机推荐

  1. C#(.NET) HMAC SHA256实现

    HMAC SHA256的实现比较简单,可以用多种语言实现,下面我用C#语言实现,一种结果是居于BASE64,另外一种是居于64位. C# HMAC SHA256 (Base64) using Syst ...

  2. base64编码解码原理

    计算机只能处理数字,所以要处理任何文本,只能先将文本转化为数字才行. Bit(bit)(b) 位或比特,是计算机运行的基础,属于二进制的范畴.数据传输大多是以[位]为单位,一个位即代表一个0或者1(即 ...

  3. UVA-10375 唯一分解定理

    #include<iostream> #include<string.h> #include<algorithm> #include<math.h> # ...

  4. Python-面向对象简介

    面向对象介绍 学习面向对象过程中会遇到一些名词,我们先解释下 名词解释 类:一个类即是对一类拥有相同属性的对象的抽象.蓝图.原型.模板.在类中定义了这些对象的都具备的属性(variables(data ...

  5. Git push提交时报错Permission denied(publickey)...Please make sure you have the correct access rights and the repository exists.

    一.git push origin master 时出错 错误信息为: Permission denied(publickey). fatal: Could not read from remote ...

  6. Linux reboot与init 6区别

    Reboot与init 6的区别 - flyingcloud_2008的专栏 - CSDN博客https://blog.csdn.net/flyingcloud_2008/article/detail ...

  7. Linux的基本解读

    Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户.多任务.支持多线程和多CPU的操作系统 而严格来讲,Linux这个词本身只表示Linux内核,但实际上人 ...

  8. Java Map 集合实现类

    Map 用于保存具有映射关系的数据,集合里会保存两组值,一组用于保存Map里的key,一组用于保存Map里的value,key与map可以是任何引用类型数据.Map的key不允许重复.key与valu ...

  9. [转帖]Windows 内核说明

    来源:https://zhidao.baidu.com/question/398191459.html 自己的理解. windows 的内核文件 是在 c:\windows\system32 目录下面 ...

  10. [转帖]Office全版本零售版转换VOL

    Office全版本零售版转换VOL https://blog.51cto.com/10981246/2062137 转成bat 执行 改天试试   @ECHO OFF&PUSHD %~DP0 ...