题目链接:[ZJOI2009]函数

对于$n=1$的情况,直接输出$1$

对于$n>1$的情况,由于我们可以将图上下反转,所以第$k$层的情况可以被转成第$n-k+1$层

规律自己打个表可以推出来:$ans=min(k,n-k+1)*2$

关键是如何证明它,我们用数学归纳法证明

当$k=1$,时,很明显$ans=2$(即最下端的那两部分)

假设在$k-1$的时候结论成立,即此时$ans=2*(k-1)$,

那么在$k$的时候

我们将$ans$中的每一段向上延伸,在碰到交点时停止,所得到的新$2(k-1)$段则是第$k$层的组成部分(因为每一个交点只会涉及到两个函数值的大小关系变化,这由题目中“没有三个函数共点”可以推知)

而每一层的开头与结尾必须是像正负无穷大无限延伸的

所以我们还要补上一头一尾两段

总的答案$=2(k-1)+2=2k$段,命题得证

 #include<iostream>
#include<string>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
using namespace std;
int n,k;
int main()
{
cin >> n >> k;
if (n==) cout << ;
else cout << min(k,n-k+)*;
return ;
}

[ZJOI2009]函数 题解的更多相关文章

  1. LightOJ - 1370 Bi-shoe and Phi-shoe 欧拉函数 题解

    题目: Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popula ...

  2. LuoguP5139 z小f的函数 题解

    Content 给定 \(T\) 个二次函数 \(y=ax^2+bx+c\),有若干次操作,有一个操作编号 \(p\),保证仅为以下这五种: 操作 \(1\):给定 \(k\),将函数图像向上移动 \ ...

  3. POJ 2407 Relatives 欧拉函数题解

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  4. [ZJOI2009]函数 BZOJ1432

    题目描述 有n 个连续函数fi (x),其中1 ≤ i ≤ n.对于任何两个函数fi (x) 和fj (x),(i != j),恰好存在一个x 使得fi (x) = fj (x),并且存在无穷多的x ...

  5. [luogu2591 ZJOI2009] 函数

    传送门 Solution 画图找规律.. Code //By Menteur_Hxy #include <cstdio> #define min(a,b) ((a)>(b)?(b): ...

  6. [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树

    链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...

  7. bzoj4176. Lucas的数论 杜教筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\) 题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\) 那么 ...

  8. G - Messy codeforces1262C

    题目大意: 输入n和m,n是n个字符,m是m个前缀.对前缀的规定可以配对的括号.比如(),,((()))等等.在输入n个括号字符,对这个n个字符,通过交换使其满足m个前缀.交换次数不限,规则想当与re ...

  9. [SWPUCTF 2018]SimplePHP

    [SWPUCTF 2018]SimplePHP 知识点 1.PHP反序列化入门之phar 2.反序列化魔术方法 __construct()//当一个对象创建时被调用 __destruct() //当一 ...

随机推荐

  1. 根据指定条件使CheckBox 无法选中

    var trList = $("#tab1").children("tr")for (var i=0;i<trList.length;i++) {var ...

  2. 05 Django REST Framework 分页

    01-分页模式 rest framework中提供了三种分页模式: from rest_framework.pagination import PageNumberPagination, LimitO ...

  3. 小谈UAT(验收测试)

    验收测试人员的测试任务: 1.验收人员是提出需求的人员,所以对需求最为熟悉,最主要测试功能的遗漏或者多余2.系统测试人员重点在测试功能的正确性和非功能的符合性,当然也希望验收人员测试功能的正确性3.因 ...

  4. Python中Socket粘包问题的解决

    服务器端 import socket import subprocess import struct server = socket.socket() ip_port = ("192.168 ...

  5. Contest1692 - 2019寒假集训第三十一场 UPC 11075 Problem D 小P的国际象棋

    非常简单的单点修改+区间加+区间查询.我用的是最近刚学的区间修改版本树状数组.  直接维护即可,注意修改后的单点值已经不是a[i],或者b[i],要通过区间查询求单点.不然是错的. 区间修改版本树状数 ...

  6. Python—json模块

    用于序列化的两个模块 json,用于字符串 和 python数据类型间进行转换 pickle,用于python特有的类型 和 python的数据类型间进行转换 Json模块提供了四个功能:dumps. ...

  7. R语言绘制QQ图

    无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline ...

  8. Masonry练习详解

    添加约束的方式: 1.通过使用NSLayoutConstraints添加约束到约束数组中,之前必须设置translatesAutoresizingMaskIntoConstraints = NO,即取 ...

  9. Hadoop01的主要总结

    Hadoop (离线) 分布式的计算框架 scala---spark(实时计算框架)

  10. react插件包

    react-scoped-style support ie8,ie8+,chrome,firefox,safari does not support css priority (just apply ...