【XSY1515】【GDKOI2016】小学生数学题 组合数学
题目描述
给你\(n,k,p\)(\(p\)为质数),求
\]
保证有解。
\(p\leq {10}^5,np^k\leq {10}^{18}\)
题解
为什么会有解?
可能会发生这样的情况:
&\sum_{i=1}^6\frac{1}{i}\mod 3\\
=&\frac{1}{1}+\frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{3}+\frac{1}{6}\mod 3\\
=&\frac{1}{1}+\frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{2}\mod 3\\
=&\cdots
\end{align}
\]
因为几个分母是\(p\)的倍数的数的逆元加起来后分子可能会变成\(p\)的倍数然后就约掉了。
令
f(n)&=\sum_{i=1}^n\frac{1}{i}\\
g(n)&=\sum_{i=1,i\neq jp}^n\frac{1}{i}
\end{align}
\]
那么
\]
因为我们的答案要对\(p^k\)取模,所以\(f(\lfloor\frac{n}{p}\rfloor)\)在计算的时候要对\(p^{k+1}\)取模,才能得到正确答案。
g(n)&=\sum_{i=a+bp}^{n}\frac{1}{i}\\
&=\sum_{a=1}^{p-1}\sum_{b=0}^{\lfloor\frac{n-a}{p}\rfloor}\frac{1}{a+bp}\\
&=\sum_{a=1}^{p-1}\sum_{b=0}^{\lfloor\frac{n-a}{p}\rfloor}a^{-1}\sum_{i=0}^{k-1}{(-1)}^i\frac{b^i}{a^i}p^i\\
&=\sum_{i=0}^{k-1}{(-1)}^ip^i\sum_{a=1}^{p-1}\frac{1}{a^{i+1}}\sum_{b=0}^{\lfloor\frac{n-a}{p}\rfloor}b^i
\end{align}
\]
这时候要算自然数幂和,但我们不能线性插值。
那就大力推一波公式吧。
\(s_s(n,m)\) 为带符号第一类斯特林数。
S_k(n)&=\sum_{i=1}^ni^k\\
x^\underline{n}&=\sum_{k=0}^ns_s(n,k)x^k\\
k!\binom{n}{k}&=n^\underline{k}\\
i^k&=s_s(k,k)i^k\\
i^k&=k!\binom{i}{k}-i^\underline{k}+s_s(k,k)i^k\\
i^k&=k!\binom{i}{k}-(i^\underline{k}-s_s(k,k)i^k)\\
i^\underline{k}-s_s(k,k)i^k&=\sum_{j=0}^ks_s(k,j)i^j-s_s(k,k)i^k\\
&=\sum_{j=0}^{k-1}s_s(k,j)i^j\\
i^k&=k!\binom{i}{k}-\sum_{j=0}^{k-1}s_s(k,j)i^j\\
S_k(n)&=\sum_{i=0}^{n}(k!\binom{i}{k}-\sum_{j=0}^{k-1}s_s(k,j)i^j)\\
&=\sum_{i=0}^nk!\binom{i}{k}-\sum_{j=0}^{k-1}s_s(k,j)\sum_{i=0}^ni^j\\
&=k!\binom{n+1}{k+1}-\sum_{i=0}^{k-1}s_s(k,i)S_j(n)\\
&=\frac{{(n+1)}^\underline{k+1}}{k+1}-\sum_{i=0}^{k-1}s_s(k,i)S_j(n)
\end{align}
\]
还有一种方法
S_m(n)&=\sum_{i=1}^ni^m\\
&=\sum_{i=1}^n\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}i^\underline{j}\\
&=\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}\sum_{i=1}^ni^\underline{j}\\
&=\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}\frac{{(n+1)}^\underline{j+1}}{j+1}
\end{align}
\]
预处理出斯特林数就可以快速算\(S_k(n)\)了。
你可能会注意到,\(\frac{{(n+1)}^\underline{k+1}}{k+1}\)有除法。
但是分子是\(k+1\)个连续的自然数幂的乘积,一定有一个是\(k+1\)的倍数,这样就可以消除分母的影响。
算\(g\)的话,每层是\(O(kp)\)的,一共有\(O(\log_pn)\)层,所以总时间复杂度是\(O(kp\log_pn)\)。
乘法取模可以用快速乘(多一个\(\log\)),也可以用黑科技,我偷懒用了int128。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef __int128 lll;
ll p;
ll mul(ll a,ll b,const ll c)
{
return (lll)a*b%c;
}
ll fp(ll a,ll b){ll s=1;for(;b;b>>=1,a*=a)if(b&1)s*=a;return s;}
ll fp(ll a,ll b,const ll c){ll s=1;for(;b;b>>=1,a=mul(a,a,c))if(b&1)s=mul(s,a,c);return s;}
int pri[1000010];
int b[1000010];
ll pw[1000010];
int cnt;
ll ss[100][100];
void getstirling(ll k,ll md)
{
ss[0][0]=1;
for(int i=1;i<=k;i++)
for(int j=1;j<=i;j++)
ss[i][j]=(ss[i-1][j-1]-mul(i-1,ss[i-1][j],md))%md;
}
ll gao(ll n,ll k,ll md)
{
ll s=(n+1)/(k+1);
ll v=s*(k+1);
for(ll i=n+1;i>=n-k+1;i--)
s=mul(s,(i==v?1:i),md);
return s;
}
void gets(ll *s,ll n,ll k,ll md)
{
s[0]=n;
for(int i=1;i<=k;i++)
{
s[i]=gao(n,i,md);
for(int j=0;j<i;j++)
s[i]=(s[i]-mul(ss[i][j],s[j],md))%md;
}
s[0]++;
}
ll s1[100];
ll s2[100];
ll g(ll n,ll md,ll k)
{
ll r=n%p;
getstirling(k,md);
gets(s1,n/p-1,k,md);
gets(s2,n/p,k,md);
ll res=0,s;
ll t=fp(p,k)-fp(p,k-1)-1;
for(int i=0;i<k;i++)
{
s=0;
pw[1]=1;
cnt=0;
for(int j=1;j<p;j++)
b[j]=0;
for(int j=2;j<p;j++)
{
if(!b[j])
{
pri[++cnt]=j;
pw[j]=fp(fp(j,i+1),t,md);
}
for(int k=1;k<=cnt&&j*pri[k]<p;k++)
{
b[j*pri[k]]=1;
pw[j*pri[k]]=mul(pw[j],pw[pri[k]],md);
if(j%pri[k]==0)
break;
}
}
if(n%p==0)
for(int j=1;j<p;j++)
s=(s+mul(s1[i],pw[j],md))%md;
else
for(int j=1;j<p;j++)
if(j<=r)
s=(s+mul(s2[i],pw[j],md))%md;
else
s=(s+mul(s1[i],pw[j],md))%md;
s=mul(s*(i&1?-1:1),fp(p,i),md);
res=(res+s)%md;
}
// fprintf(stderr,"G(%lld, %lld) = %lld\n",n,md,(res+md)%md);
return res;
}
ll f(ll n,ll md,ll k)
{
if(!n)
return 0;
return (g(n,md,k)+f(n/p,md*p,k+1)/p)%md;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
#endif
ll n,k;
scanf("%lld%lld%lld",&p,&k,&n);
ll md=fp(p,k);
ll ans=f(n,md,k);
ans=(ans+md)%md;
printf("%lld\n",ans);
return 0;
}
【XSY1515】【GDKOI2016】小学生数学题 组合数学的更多相关文章
- [GDKOI2016]小学生数学题
记 $F(n)=\sum\limits_{i=1}^{n}i^{-1}$ $G(n)=\sum\limits_{i=1,i\neq jp}^{n}i^{-1}$ 我们要算$F(n)\%p^k$ 那么 ...
- [xsy1515]小学生数学题
题意:求$\begin{align*}\left(\sum\limits_{i=1}^n\dfrac 1i\right)\%\ p^k\end{align*}$ 数学真是太可爱了== 直接推公式 设$ ...
- python笔记1-用python解决小学生数学题
前几天有人在群里给小编出了个数学题: 假设你有无限数量的邮票,面值分别为6角,7角,8角,请问你最大的不可支付邮资是多少元? 小编掰着手指头和脚趾头算了下,答案是:1.7元 那么问题来了?为啥是1.7 ...
- python笔记-用python解决小学生数学题【转载】
本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/tag/python/ 前几天有人在群里给小编出了个数学题: 假设你有无限数量的邮票,面值分别为 ...
- GDKOI2016 游记
2016.2.19~2.15强行广州koi被虐…… DAY 0 19日下午到达,第六次入住中大西苑宾馆,怂逼抽签抽中外交大使特殊职位,然后就一边看<死神>一边等石门两位室友啦.必须吐槽宾馆 ...
- GDKOI2016总结——被虐之旅
前言 一个被虐的旅程... 这次GDKOI的比赛虽然基本全上暴力,但是居然只有两道题得了分:30+30=60!我感觉整个人都不好了... day0 在去广州的路上,本来心情很好,但是坐在我斜后面的那位 ...
- GDKOI 2016
GDKOI 2016 day 1 第一题 魔卡少女 题目描述:维护一个序列,能进行以下两个操作:1.将某一个位置的值改变.2.求区间的连续子串的异或值的和. solution 因为序列的数的值都小于\ ...
- 2018年北京信息科技大学第十届程序设计竞赛暨ACM选拔赛题解
链接:https://www.nowcoder.com/acm/contest/118/A 来源:牛客网 PUBG 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语 ...
- GDOI2017 再次酱油记
Day 0 13:00 pm 啊...今天中午一点钟从ez出发,感觉吼有趣啊.出发前先大喊一声****,在书包里放一本党史,感觉玄学可以救命[滑稽] 15:00 pm 到达东莞,坐标:石龙名冠金凯悦大 ...
随机推荐
- 未安装Oracle客户端的服务器上,使用ASP.NET远程连接Oracle
公司服务器一直都是使用 .NET+SQLSERVER的开发方式,有个项目需要进行读取远程Oracle的需求.由于oracle 基本不会,也是一边做一遍摸索. 首先是使用工具测试是否已经联通,因为之前用 ...
- 20分钟 看图手写的table
<html><body><table width="100%" border="1" cellspacing="0&qu ...
- python中的Init方法, new 方法 call 方法
new 方法实现单列模式思考 class Single: _single = None _single_only = None def __init__(self, value): self.v = ...
- openstack-KVM安装与使用
一.KVM安装 1.安装条件 VT-x BIOS Intel9R) Virtualization Tech [Enabled] cat /proc/cpuinfo | grep -e vmx -e n ...
- Golang开发工具LiteIDE使用方法整理
安装 参考github的说明 添加GOPATH 创建workspace 创建新文件 运行程序 Liteide中运行程序有两种方式: FR(FileRun)是编译并运行单个文件,可以使用Shift + ...
- 6 Prefer and Would rather
1 prefer 使用 "prefer" 用来表明通常喜欢某件事甚于另一件事.说话者喜欢打高尔夫球更甚于喜欢打网球."prefer" 的后面可以接名词(&quo ...
- vue+webpack项目打包后背景图片加载不出来问题解决
在做VUE +的WebPack脚手架项目打包完成后,在IIS服务器上运行发现项目中的背景图片加载不出来检查项目代码发现是因为CSS文件中,背景图片引用的路径问题;后来通过修改配置文件,问题终于解决了, ...
- 关于Navicat连接虚拟机宝塔数据库
1.由于虚拟机安装的宝塔面板,目前没找到数据库安全配置文件,所以没能用Navicat连接数据库 2.在宝塔面板=>安全下 放行 3306 端口 即可以 连接成功 跟将bind-address = ...
- dart正则
1.前言 API中对于正则表达式的注释是:正则表达式的规范和语义与JavaScript相同详细的规范可以参考:http://ecma-international.org/ecma-262/5.1/#s ...
- 转《service worker在移动端H5项目的应用》
1. PWA和Service Worker的关系 PWA (Progressive Web Apps) 不是一项技术,也不是一个框架,我们可以把她理解为一种模式,一种通过应用一些技术将 Web App ...