题目描述

  给你\(n,k,p\)(\(p\)为质数),求

\[\sum_{i=1}^n\frac{1}{i}\mod p^k
\]

  保证有解。

  \(p\leq {10}^5,np^k\leq {10}^{18}\)

题解

  为什么会有解?

  可能会发生这样的情况:

\[\begin{align}
&\sum_{i=1}^6\frac{1}{i}\mod 3\\
=&\frac{1}{1}+\frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{3}+\frac{1}{6}\mod 3\\
=&\frac{1}{1}+\frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{2}\mod 3\\
=&\cdots
\end{align}
\]

  因为几个分母是\(p\)的倍数的数的逆元加起来后分子可能会变成\(p\)的倍数然后就约掉了。

  令

\[\begin{align}
f(n)&=\sum_{i=1}^n\frac{1}{i}\\
g(n)&=\sum_{i=1,i\neq jp}^n\frac{1}{i}
\end{align}
\]

  那么

\[f(n)=g(n)+\frac{f(\lfloor\frac{n}{p}\rfloor)}{p}
\]

  因为我们的答案要对\(p^k\)取模,所以\(f(\lfloor\frac{n}{p}\rfloor)\)在计算的时候要对\(p^{k+1}\)取模,才能得到正确答案。

\[\begin{align}
g(n)&=\sum_{i=a+bp}^{n}\frac{1}{i}\\
&=\sum_{a=1}^{p-1}\sum_{b=0}^{\lfloor\frac{n-a}{p}\rfloor}\frac{1}{a+bp}\\
&=\sum_{a=1}^{p-1}\sum_{b=0}^{\lfloor\frac{n-a}{p}\rfloor}a^{-1}\sum_{i=0}^{k-1}{(-1)}^i\frac{b^i}{a^i}p^i\\
&=\sum_{i=0}^{k-1}{(-1)}^ip^i\sum_{a=1}^{p-1}\frac{1}{a^{i+1}}\sum_{b=0}^{\lfloor\frac{n-a}{p}\rfloor}b^i
\end{align}
\]

  这时候要算自然数幂和,但我们不能线性插值。

  那就大力推一波公式吧。

  \(s_s(n,m)\) 为带符号第一类斯特林数。

\[\begin{align}
S_k(n)&=\sum_{i=1}^ni^k\\
x^\underline{n}&=\sum_{k=0}^ns_s(n,k)x^k\\
k!\binom{n}{k}&=n^\underline{k}\\
i^k&=s_s(k,k)i^k\\
i^k&=k!\binom{i}{k}-i^\underline{k}+s_s(k,k)i^k\\
i^k&=k!\binom{i}{k}-(i^\underline{k}-s_s(k,k)i^k)\\
i^\underline{k}-s_s(k,k)i^k&=\sum_{j=0}^ks_s(k,j)i^j-s_s(k,k)i^k\\
&=\sum_{j=0}^{k-1}s_s(k,j)i^j\\
i^k&=k!\binom{i}{k}-\sum_{j=0}^{k-1}s_s(k,j)i^j\\
S_k(n)&=\sum_{i=0}^{n}(k!\binom{i}{k}-\sum_{j=0}^{k-1}s_s(k,j)i^j)\\
&=\sum_{i=0}^nk!\binom{i}{k}-\sum_{j=0}^{k-1}s_s(k,j)\sum_{i=0}^ni^j\\
&=k!\binom{n+1}{k+1}-\sum_{i=0}^{k-1}s_s(k,i)S_j(n)\\
&=\frac{{(n+1)}^\underline{k+1}}{k+1}-\sum_{i=0}^{k-1}s_s(k,i)S_j(n)
\end{align}
\]

  还有一种方法

\[\begin{align}
S_m(n)&=\sum_{i=1}^ni^m\\
&=\sum_{i=1}^n\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}i^\underline{j}\\
&=\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}\sum_{i=1}^ni^\underline{j}\\
&=\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}\frac{{(n+1)}^\underline{j+1}}{j+1}
\end{align}
\]

  预处理出斯特林数就可以快速算\(S_k(n)\)了。

  你可能会注意到,\(\frac{{(n+1)}^\underline{k+1}}{k+1}\)有除法。

  但是分子是\(k+1\)个连续的自然数幂的乘积,一定有一个是\(k+1\)的倍数,这样就可以消除分母的影响。

  算\(g\)的话,每层是\(O(kp)\)的,一共有\(O(\log_pn)\)层,所以总时间复杂度是\(O(kp\log_pn)\)。

  乘法取模可以用快速乘(多一个\(\log\)),也可以用黑科技,我偷懒用了int128。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef __int128 lll;
ll p;
ll mul(ll a,ll b,const ll c)
{
return (lll)a*b%c;
}
ll fp(ll a,ll b){ll s=1;for(;b;b>>=1,a*=a)if(b&1)s*=a;return s;}
ll fp(ll a,ll b,const ll c){ll s=1;for(;b;b>>=1,a=mul(a,a,c))if(b&1)s=mul(s,a,c);return s;}
int pri[1000010];
int b[1000010];
ll pw[1000010];
int cnt;
ll ss[100][100];
void getstirling(ll k,ll md)
{
ss[0][0]=1;
for(int i=1;i<=k;i++)
for(int j=1;j<=i;j++)
ss[i][j]=(ss[i-1][j-1]-mul(i-1,ss[i-1][j],md))%md;
}
ll gao(ll n,ll k,ll md)
{
ll s=(n+1)/(k+1);
ll v=s*(k+1);
for(ll i=n+1;i>=n-k+1;i--)
s=mul(s,(i==v?1:i),md);
return s;
}
void gets(ll *s,ll n,ll k,ll md)
{
s[0]=n;
for(int i=1;i<=k;i++)
{
s[i]=gao(n,i,md);
for(int j=0;j<i;j++)
s[i]=(s[i]-mul(ss[i][j],s[j],md))%md;
}
s[0]++;
}
ll s1[100];
ll s2[100];
ll g(ll n,ll md,ll k)
{
ll r=n%p;
getstirling(k,md);
gets(s1,n/p-1,k,md);
gets(s2,n/p,k,md);
ll res=0,s;
ll t=fp(p,k)-fp(p,k-1)-1;
for(int i=0;i<k;i++)
{
s=0;
pw[1]=1;
cnt=0;
for(int j=1;j<p;j++)
b[j]=0;
for(int j=2;j<p;j++)
{
if(!b[j])
{
pri[++cnt]=j;
pw[j]=fp(fp(j,i+1),t,md);
}
for(int k=1;k<=cnt&&j*pri[k]<p;k++)
{
b[j*pri[k]]=1;
pw[j*pri[k]]=mul(pw[j],pw[pri[k]],md);
if(j%pri[k]==0)
break;
}
}
if(n%p==0)
for(int j=1;j<p;j++)
s=(s+mul(s1[i],pw[j],md))%md;
else
for(int j=1;j<p;j++)
if(j<=r)
s=(s+mul(s2[i],pw[j],md))%md;
else
s=(s+mul(s1[i],pw[j],md))%md;
s=mul(s*(i&1?-1:1),fp(p,i),md);
res=(res+s)%md;
}
// fprintf(stderr,"G(%lld, %lld) = %lld\n",n,md,(res+md)%md);
return res;
}
ll f(ll n,ll md,ll k)
{
if(!n)
return 0;
return (g(n,md,k)+f(n/p,md*p,k+1)/p)%md;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
#endif
ll n,k;
scanf("%lld%lld%lld",&p,&k,&n);
ll md=fp(p,k);
ll ans=f(n,md,k);
ans=(ans+md)%md;
printf("%lld\n",ans);
return 0;
}

【XSY1515】【GDKOI2016】小学生数学题 组合数学的更多相关文章

  1. [GDKOI2016]小学生数学题

    记 $F(n)=\sum\limits_{i=1}^{n}i^{-1}$ $G(n)=\sum\limits_{i=1,i\neq jp}^{n}i^{-1}$ 我们要算$F(n)\%p^k$ 那么 ...

  2. [xsy1515]小学生数学题

    题意:求$\begin{align*}\left(\sum\limits_{i=1}^n\dfrac 1i\right)\%\ p^k\end{align*}$ 数学真是太可爱了== 直接推公式 设$ ...

  3. python笔记1-用python解决小学生数学题

    前几天有人在群里给小编出了个数学题: 假设你有无限数量的邮票,面值分别为6角,7角,8角,请问你最大的不可支付邮资是多少元? 小编掰着手指头和脚趾头算了下,答案是:1.7元 那么问题来了?为啥是1.7 ...

  4. python笔记-用python解决小学生数学题【转载】

    本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/tag/python/ 前几天有人在群里给小编出了个数学题: 假设你有无限数量的邮票,面值分别为 ...

  5. GDKOI2016 游记

    2016.2.19~2.15强行广州koi被虐…… DAY 0 19日下午到达,第六次入住中大西苑宾馆,怂逼抽签抽中外交大使特殊职位,然后就一边看<死神>一边等石门两位室友啦.必须吐槽宾馆 ...

  6. GDKOI2016总结——被虐之旅

    前言 一个被虐的旅程... 这次GDKOI的比赛虽然基本全上暴力,但是居然只有两道题得了分:30+30=60!我感觉整个人都不好了... day0 在去广州的路上,本来心情很好,但是坐在我斜后面的那位 ...

  7. GDKOI 2016

    GDKOI 2016 day 1 第一题 魔卡少女 题目描述:维护一个序列,能进行以下两个操作:1.将某一个位置的值改变.2.求区间的连续子串的异或值的和. solution 因为序列的数的值都小于\ ...

  8. 2018年北京信息科技大学第十届程序设计竞赛暨ACM选拔赛题解

    链接:https://www.nowcoder.com/acm/contest/118/A 来源:牛客网 PUBG 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语 ...

  9. GDOI2017 再次酱油记

    Day 0 13:00 pm 啊...今天中午一点钟从ez出发,感觉吼有趣啊.出发前先大喊一声****,在书包里放一本党史,感觉玄学可以救命[滑稽] 15:00 pm 到达东莞,坐标:石龙名冠金凯悦大 ...

随机推荐

  1. Python—包介绍

    包(Package) 当你的模块文件越来越多,就需要对模块文件进行划分,比如把负责跟数据库交互的都放一个文件夹,把与页面交互相关的放一个文件夹, . └── my_proj ├── crm #代码目录 ...

  2. react 项目搭建

    1.首先运行环境-node是必须的,需要下载安装node的运行环境: 2.安装好了node之后,自然的就有了npm: 3.npm install -g creact-react-app/全局安装cre ...

  3. PS电商产品banner设计

  4. Python_服务器与多客户端通信、UDP协议、pycharm打印带颜色输出、时间同步的机制

    1.服务器与多客户端通信 import socket # 创建tcp socket的套接字 sk = socket.socket() # bind sk.bind(('127.0.0.1',8080) ...

  5. Pair Project

    以前只是一个人完成一个项目,不论什么都是,现在突然要两个人一起来写, 听上去挺稀奇的,也挺简单的,可惜了就是“听上去”而已.我认为这也是一种技术啊~ 我跟我的搭档研究了好久好久,选择了好久,然后也选了 ...

  6. NGINX Docs | Load Balancing Apache Tomcat Servers with NGINX Open Source and NGINX Plus

    NGINX Docs | Load Balancing Apache Tomcat Servers with NGINX Open Source and NGINX Plushttps://docs. ...

  7. jvisualvm远程监控 visualgc插件 不受此jvm支持问题

    https://yq.aliyun.com/ziliao/478212 1.修改远程服务器上java设置 vi $JAVA_HOME/jre/lib/security/java.policy    在 ...

  8. PHP导出CSV文件出现乱码的解决方法

    在做项目时碰到使用外语的情况下,我们就会使用UTF-8编码.但是,在用PHP导出CSV文件时,如果写入的数据是使用UTF-8编码的日语.韩语之类的外文,就会出现乱码. 要解决PHP生成CSV文件的乱码 ...

  9. md5加密通过URL传给后台

    首先要把你要用的md5库引入 这个技术其实挺简单的,咋们直接贴上代码(这个是项目上的) sign = hex_md5("type="+type&"userId=& ...

  10. 三、taro路由及设计稿及尺寸单位

    一.路由配置 路由配置跟小程序一样,在入口文件的 config 配置中指定好 pages 通过taro API 跳转,详见导航 // 跳转到目的页面,打开新页面 Taro.navigateTo({ u ...