传送门


思路

显然可以特征根方程搞一波(生成函数太累),得到结果:

\[a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\frac{233+13\sqrt{337}}{2})^n]
\]

(其实我也不知道是不是,网上抄的,懒得算了)

放在模意义下,得到

\[a_n= 233230706\times (94153035^n-905847205^n) \pmod {1e9+7}
\]

后面两个可以分块,预处理出\(x^{[1,\sqrt{{mod}}]}\),再处理出\(x^{\sqrt{mod}\times[1,\sqrt{mod}]}\),就可以\(O(1)\)得到\(x^n\)了。


代码

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define BASE 32768
#define mod 1000000007
#define templ template<typename T>
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
inline void print(register int x)
{
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; namespace Mker
{
unsigned long long SA,SB,SC;
void init(){scanf("%llu%llu%llu",&SA,&SB,&SC);}
inline unsigned long long rand()
{
SA^=SA<<32,SA^=SA>>13,SA^=SA<<1;
unsigned long long t=SA;
SA=SB,SB=SC,SC^=t^SA;return SC;
}
} struct POW
{
ll a;
ll pow1[BASE+2],pow2[BASE+2];
void init(int aa)
{
a=aa;
pow1[0]=1;rep(i,1,BASE) pow1[i]=pow1[i-1]*a%mod;
pow2[0]=1;rep(i,1,BASE) pow2[i]=pow2[i-1]*pow1[BASE]%mod;
}
inline ll query(register int n){return pow1[n&32767]*pow2[n>>15]%mod;}
}a,b; int main()
{
file();
a.init(94153035),b.init(905847205);
int T;read(T);Mker::init();
ll ans=0;
rep(i,1,T)
{
ll n=Mker::rand()%(mod-1);
ll cur=233230706ll*(a.query(n)-b.query(n)+mod)%mod;
ans^=cur;
}
cout<<ans;
return 0;
}

洛谷P5110 块速递推 [分块]的更多相关文章

  1. 洛谷 P5110 块速递推

    题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...

  2. P5110 块速递推-光速幂、斐波那契数列通项

    P5110 块速递推 题意 多次询问,求数列 \[a_i=\begin{cases}233a_{i-1}+666a_{i-2} & i>1\\ 0 & i=0\\ 1 & ...

  3. P5110 块速递推

    传送门 为啥我就没看出来有循环节呢-- 打表可得,这个数列是有循环节的,循环节为\(10^9+6\),然后分块预处理,即取\(k=sqrt(10^9+6)\),然后分别预处理出转移矩阵\(A\)的\( ...

  4. P5110 【块速递推】

    太菜了,不会生成函数,于是用特征方程来写的这道题 首先我们知道,形如\(a_n=A*a_{n-1}+B*a_{n-2}\)的特征方程为\(x^2=A*x+B\) 于是此题的递推式就是:\(x^2=23 ...

  5. Luogu5110 块速递推

    题面 题解 线性常系数齐次递推sb板子题 $a_n=233a_{n-1}+666a_{n-2}$的特征方程为 $$ x^2=233x+666 \\ x^2-233x+666=0 \\ x_1=\fra ...

  6. 洛谷P1240-诸侯安置+递推非搜索

    诸侯安置 这道题是一题递推题,一开始自己不知道,用了搜索,只过了三个样例: 两两相同的合并, 成 1,1,3,3,5,5........n*2-1; 然后我们会容易发现一种不同与搜索的动态规划做法. ...

  7. 【洛谷 P5110】 块速递推(矩阵加速,分块打表)

    题目链接 掌握了分块打表法了.原来以前一直想错了... 块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表. 然后就 ...

  8. P5110-块速递推【特征方程,分块】

    正题 题目链接:https://www.luogu.com.cn/problem/P5110 题目大意 数列\(a\)满足 \[a_n=233a_{n-1}+666a_{n-2},a_0=0,a_1= ...

  9. 洛谷P4117 [Ynoi2018]五彩斑斓的世界 [分块,并查集]

    洛谷 Codeforces 又是一道卡常题-- 思路 YNOI当然要分块啦. 分块之后怎么办? 零散块暴力,整块怎么办? 显然不能暴力改/查询所有的.考虑把相同值的用并查集连在一起,这样修改时就只需要 ...

随机推荐

  1. 六、文件IO——fcntl 函数 和 ioctl 函数

    6.1 fcntl 函数 6.1.1 函数介绍 #include <unistd.h> #include <fcntl.h> int fcntl(int fd, int cmd ...

  2. Filter 起航 编程式配置 压缩响应 日志过滤器

    [编程式配置]可以用web.xml配置替换 @WebListenerpublic class FilterListenerConfigurator implements ServletContextL ...

  3. 高并发秒杀系统--mybatis整合技巧

    mybatis实现DAO接口编码技巧 1.XML文件通过namespace命名空间关联接口类 <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD ...

  4. 一个简单至极的PHP缓存类代码

    https://www.jb51.net/article/73836.htm 直接看代码吧!使用说明:1.实例化$cache = new Cache(); 2.设置缓存时间和缓存目录$cache = ...

  5. MGR架构~ 整体性能架构的调优

    一 简介:MGR集群架构的调优二 过程:本文将从各个角度来具体阐述下三 硬件    1 硬件选择相同配置的服务器,磁盘,内存,cpu性能越高越好四 网络    1 0丢包和最好万兆网卡五 MGR本身  ...

  6. 2017 ACM/ICPC(西安)赛后总结

    早上8:00的高铁,所以不得不6点前起床,向火车站赶……到达西安后已经是中午,西工大距离西安北站大概3小时车程的距离,只好先解决午饭再赶路了……下午3.30的热身赛,一行人在3.35左右赶到了赛场,坐 ...

  7. Eclipse使用solrJ 7.7.0连接solr步骤

    先写一个测试类: package com.taotao.rest.solrj; import org.apache.solr.client.solrj.SolrClient; import org.a ...

  8. C++中,有哪4种与类型转换相关的关键字?各有什么特点?应该在什么场合下使用?

    转:https://www.cnblogs.com/mjiang2017/p/9358032.html C++中,四个与类型转换相关的关键字:static_cast.const_cast.reinte ...

  9. RabbitMQ channel 参数详解

    1.Channel 1.1 channel.exchangeDeclare(): type:有direct.fanout.topic三种durable:true.false true:服务器重启会保留 ...

  10. 老师博客copy

    新闻 管理   Py西游攻关之基础数据类型   数据类型 计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是,计算机能处理的远不止数值,还可以处理文本.图形.音频 ...