【LOJ#6060】Set(线性基)
【LOJ#6060】Set(线性基)
题面
题解
好题啊QwQ。
首先\(x1\oplus x2=s\)是定值。而\(s\)中假设某一位上是\(1\),则\(x1,x2\)上必定有一个是\(1\),另一个是\(0\),所以对答案没有影响。反过来,如果\(s\)上某一位为\(0\),则要么都是\(0\),要么都是\(1\)。
所以我们在考虑构造线性基的时候,优先考虑\(0\)的位,再考虑\(1\)的位。
那么现在只需要令\(x2\)在原本在\(s\)是\(0\)的位置上取到尽可能多的\(1\)的情况下最大,这样子异或一下就是\(x1\)了。(好乱啊)
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 100100
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n;ll a[MAX],s,p[70],s1,s2;
int b[70],tot;
void insert(ll x)
{
for(int i=1;i<=tot;++i)
if(x&(1ll<<b[i]))
{
if(!p[i]){p[i]=x;break;}
else x^=p[i];
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read(),s^=a[i];
for(int i=62;~i;--i)if(!(s&(1ll<<i)))b[++tot]=i;
for(int i=62;~i;--i)if(s&(1ll<<i))b[++tot]=i;
for(int i=1;i<=n;++i)insert(a[i]);
for(int i=1;i<=tot;++i)if(!(s2&(1ll<<b[i])))s2^=p[i];
printf("%lld\n",s^s2);
return 0;
}
【LOJ#6060】Set(线性基)的更多相关文章
- LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)
LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...
- LOJ.6060.[2017山东一轮集训Day1/SDWC2018Day1]Set(线性基)
LOJ BZOJ 明明做过一道(最初思路)比较类似的题啊,怎么还是一点思路没有. 记所有元素的异或和为\(s\),那么\(x_1+x_2=x_1+x_1\ ^{\wedge}s\). \(s\)是确定 ...
- loj#2013. 「SCOI2016」幸运数字 点分治/线性基
题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...
- LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset
题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...
- LOJ 2978 「THUSCH 2017」杜老师——bitset+线性基+结论
题目:https://loj.ac/problem/2978 题解:https://www.cnblogs.com/Paul-Guderian/p/10248782.html 第 i 个数的 bits ...
- loj#2312. 「HAOI2017」八纵八横(线性基 线段树分治)
题意 题目链接 Sol 线性基+线段树分治板子题.. 调起来有点自闭.. #include<bits/stdc++.h> #define fi first #define se secon ...
- LOJ.114.K大异或和(线性基)
题目链接 如何求线性基中第K小的异或和?好像不太好做. 如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i]). 这可以重构一下线性基, ...
- LOJ #113. 最大异或和 (线性基)
题目链接:#113. 最大异或和 题目描述 这是一道模板题. 给由 \(n\) 个数组成的一个可重集 \(S\),每次给定一个数 \(k\),求一个集合 \(T \subseteq S\),使得集合 ...
- 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)
LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...
随机推荐
- Is-a
在知识表示.面向对象程序设计与面向对象设计的领域里, is-a(英语:subsumption,包含架构)指的是类的父子继承关系, 例如类D是另一个类B的子类(类B是类D的父类). 换句话说,通常&qu ...
- PHP安装pecl扩展--通用
虽然现在composer很流行,但是有时候,我们还是要安装pecl的扩展. pecl扩展可以在pecl.php.net中查看,想要什么扩展,可以去搜索,比如xdebug.siege.memcached ...
- 学习 yii2.0——视图之间相互包含
布局 首先创建一个布局文件simple.php,路径是在views/layout/目录下. <p>this is header</p> <?= $content ?> ...
- React Native之本地文件系统访问组件react-native-fs的介绍与使用
React Native之本地文件系统访问组件react-native-fs的介绍与使用 一,需求分析 1,需要将图片保存到本地相册: 2,需要创建文件,并对其进行读写 删除操作. 二,简单介绍 re ...
- [转帖]oracle改版sql server问题点汇总
https://www.cnblogs.com/zhangdk/p/oracle_sqlserver.html 只记得 最开始的时候看过 没有具体的了解里面的特点 原作者总结的很好 留下来 以后说不定 ...
- 常见IT工具软件总结
1. 阿里云在线迁移服务 2.智能媒体管理 格式转换 业务域名管理 1. 每个业务有一个英文单词, 1. 每个 git 的命名应该是 chgg-业务英文-种类 2. 例如 chgg-plant-api ...
- mysql数据库,安装 !创建!...详解!
package cn.jiayou; /* 一.mysql? a.MySQL是Web世界中使用最广泛的数据库服务器. SQLite的特点? 1.是轻量级.可嵌入,但不能承受高并发访问,适合桌面和移动应 ...
- List接口方法
package cn.zhou.com; /* * List?-------是啥? Collection 的一个子接口! * * 集合?容器? * * 区分容器,每个容器的数据结构不一样! * 集合, ...
- 一、linux扩展
1.linux-解压bz2文件提示tar (child): bzip2: Cannot exec: No such file or directory 原因,linux下没有bzip2解压工具 安装b ...
- LODOP字体不识别 英文字母连起来 引号不正常
打印超文本的时候,有时候会发现html中设置的css样式显示不正常,字体根本不是设置的字体,这种情况有可能是:1.该操作系统没有安装自己指定的那种字体,那么没有安装自然就不能显示设置的字体.2.该操作 ...