【BZOJ4543】Hotel加强版(长链剖分)

题面

BZOJ,没有题面

洛谷,只是普通版本

题解

原来我们的\(O(n^2)\)做法是设\(f[i][j]\)表示以\(i\)为根的子树中,距离\(i\)的深度为\(j\)的点的个数,这样子可以每次在\(LCA\)处合并答案。

然后长链剖分优化一下,就变成了\(O(n)\)的???

写的详细写的题解

玄学的指针我也没太懂啊。。。。我才不会说我代码是照着题解打的

upd:之前的代码蒯错了,我去BZOJ把过了的代码再蒯一遍

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 100100
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1,n;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dep[MAX],hson[MAX],md[MAX];
void dfs1(int u,int ff)
{
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dfs1(v,u);md[u]=max(md[u],md[v]);
if(md[v]>md[hson[u]])hson[u]=v;
}
md[u]=md[hson[u]]+1;
}
ll *f[MAX],*g[MAX],tmp[MAX<<2],*id=tmp,ans;
void dfs(int u,int ff)
{
if(hson[u])f[hson[u]]=f[u]+1,g[hson[u]]=g[u]-1,dfs(hson[u],u);
f[u][0]=1;ans+=g[u][0];
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff||v==hson[u])continue;
f[v]=id;id+=md[v]<<1;g[v]=id;id+=md[v]<<1;
dfs(v,u);
for(int j=0;j<md[v];++j)
{
if(j)ans+=f[u][j-1]*g[v][j];
ans+=g[u][j+1]*f[v][j];
}
for(int j=0;j<md[v];++j)
{
g[u][j+1]+=f[u][j+1]*f[v][j];
if(j)g[u][j-1]+=g[v][j];
f[u][j+1]+=f[v][j];
}
}
}
int main()
{
n=read();
for(int i=1,u,v;i<n;++i)u=read(),v=read(),Add(u,v),Add(v,u);
dfs1(1,0);f[1]=id;id+=md[1]<<1;g[1]=id;id+=md[1]<<1;
dfs(1,0);printf("%lld\n",ans);
return 0;
}

【BZOJ4543】Hotel加强版(长链剖分)的更多相关文章

  1. bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...

  2. BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP

    题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...

  3. BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)

    题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...

  4. BZOJ3522&4543 [POI2014]Hotel加强版 长链剖分

    上上周见fc爷用长链剖分秒题 于是偷偷学一学 3522的数据范围很小 可以暴力枚举每个点作为根节点来dp 复杂度$O(n^2)$ 考虑令$f[x][j]$表示以$x$为根的子树内距离$x$为$j$的点 ...

  5. 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP

    [BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...

  6. bzoj 3522 / 4543 [POI 2014] Hotel - 动态规划 - 长链剖分

    题目传送门 bzoj 3522 需要root权限的传送点 bzoj 4543 快速的传送点 慢速的传送点 题目大意 给定一棵树,问有多少个无序三元组$(x, y, z)$使得这三个不同点在树上两两距离 ...

  7. 2019.01.08 bzoj4543: [POI2014]Hotel加强版(长链剖分+dp)

    传送门 代码: 长链剖分好题. 题意:给你一棵树,问树上选三个互不相同的节点,使得这个三个点两两之间距离相等的方案数. 思路: 先考虑dpdpdp. fi,jf_{i,j}fi,j​表示iii子树中离 ...

  8. BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)

    题目好神仙--这个叫长链剖分的玩意儿更神仙-- 考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\ ...

  9. 蒟蒻的长链剖分学习笔记(例题:HOTEL加强版、重建计划)

    长链剖分学习笔记 说到树的链剖,大多数人都会首先想到重链剖分.的确,目前重链剖分在OI中有更加多样化的应用,但它大多时候是替代不了长链剖分的. 重链剖分是把size最大的儿子当成重儿子,顾名思义长链剖 ...

随机推荐

  1. IDEA通过Git同步代码到Coding

     准备工作: (1)在本地创建好项目 (2)在coding创建好项目,并设置公开      1.创建Git仓库 2.选择对应的本地项目文件夹 以上两步相当于在项目文件夹中git bash here 并 ...

  2. js this的含义以及讲解

    this关键字是一个非常重要的语法点.毫不夸张地说,不理解它的含义,大部分开发任务都无法完成. 首先,this总是返回一个对象,简单说,就是返回属性或方法“当前”所在的对象. 下面来两个例子来让大家更 ...

  3. C#中使用打印日志

    在日常的工作中经常需要日志,这样能够很容易定位到代码中的一些错误,.Net中有自带的日志接口.并没有仔细去研究,这里是我自己写的日志接口,记录下来以便以后用到,根据时间打印相关的日志文件,代码如下: ...

  4. 11 The superlative

    1 最高级用来表明三个或更多事物之间的关系.最高级是通过在形容词之前加 "the" 并在之后加 "-est",或在形容词之前加 "the most&q ...

  5. [转帖]How To Be Successful

    How To Be Successful http://blog.samaltman.com/how-to-be-successful 总结一下文章的重点: 1. Compound yourself2 ...

  6. js怎么能取得多选下拉框选中的多个值?

    方法:获取多选下拉框对象数组→循环判断option选项的selected属性(true为选中,false为未选中)→使用value属性取出选中项的值.实例演示如下: 1.HTML结构 1 2 3 4 ...

  7. hive之size函数和cast转换函数

    size返回map集合中元素的个数: cast函数将一种类型的数据转换成其他格式的数据

  8. js删除数组元素

    一.清空数组 var ary = [1,2,3,4]; ary.splice(0,ary.length);//清空数组 console.log(ary); // 输出 [],空数组,即被清空了 二.删 ...

  9. python学习笔记(9)--函数

    函数定义: def <函数名>(<参数(0个或多个)>): 函数体 return <返回值> 参数有非可选参数,和可选参数,可选参数放在参数列表的最后,可以为可选参 ...

  10. zabbix-2.4.5的安装配置与使用

    系统最小化安装 环境: zabbix_server     12.1.1.1 zabbix_agent     12.1.1.2 zabbix_proxy      12.1.1.3 1.安装环境: ...