【BZOJ4543】Hotel加强版(长链剖分)

题面

BZOJ,没有题面

洛谷,只是普通版本

题解

原来我们的\(O(n^2)\)做法是设\(f[i][j]\)表示以\(i\)为根的子树中,距离\(i\)的深度为\(j\)的点的个数,这样子可以每次在\(LCA\)处合并答案。

然后长链剖分优化一下,就变成了\(O(n)\)的???

写的详细写的题解

玄学的指针我也没太懂啊。。。。我才不会说我代码是照着题解打的

upd:之前的代码蒯错了,我去BZOJ把过了的代码再蒯一遍

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 100100
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1,n;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dep[MAX],hson[MAX],md[MAX];
void dfs1(int u,int ff)
{
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dfs1(v,u);md[u]=max(md[u],md[v]);
if(md[v]>md[hson[u]])hson[u]=v;
}
md[u]=md[hson[u]]+1;
}
ll *f[MAX],*g[MAX],tmp[MAX<<2],*id=tmp,ans;
void dfs(int u,int ff)
{
if(hson[u])f[hson[u]]=f[u]+1,g[hson[u]]=g[u]-1,dfs(hson[u],u);
f[u][0]=1;ans+=g[u][0];
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff||v==hson[u])continue;
f[v]=id;id+=md[v]<<1;g[v]=id;id+=md[v]<<1;
dfs(v,u);
for(int j=0;j<md[v];++j)
{
if(j)ans+=f[u][j-1]*g[v][j];
ans+=g[u][j+1]*f[v][j];
}
for(int j=0;j<md[v];++j)
{
g[u][j+1]+=f[u][j+1]*f[v][j];
if(j)g[u][j-1]+=g[v][j];
f[u][j+1]+=f[v][j];
}
}
}
int main()
{
n=read();
for(int i=1,u,v;i<n;++i)u=read(),v=read(),Add(u,v),Add(v,u);
dfs1(1,0);f[1]=id;id+=md[1]<<1;g[1]=id;id+=md[1]<<1;
dfs(1,0);printf("%lld\n",ans);
return 0;
}

【BZOJ4543】Hotel加强版(长链剖分)的更多相关文章

  1. bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...

  2. BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP

    题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...

  3. BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)

    题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...

  4. BZOJ3522&4543 [POI2014]Hotel加强版 长链剖分

    上上周见fc爷用长链剖分秒题 于是偷偷学一学 3522的数据范围很小 可以暴力枚举每个点作为根节点来dp 复杂度$O(n^2)$ 考虑令$f[x][j]$表示以$x$为根的子树内距离$x$为$j$的点 ...

  5. 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP

    [BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...

  6. bzoj 3522 / 4543 [POI 2014] Hotel - 动态规划 - 长链剖分

    题目传送门 bzoj 3522 需要root权限的传送点 bzoj 4543 快速的传送点 慢速的传送点 题目大意 给定一棵树,问有多少个无序三元组$(x, y, z)$使得这三个不同点在树上两两距离 ...

  7. 2019.01.08 bzoj4543: [POI2014]Hotel加强版(长链剖分+dp)

    传送门 代码: 长链剖分好题. 题意:给你一棵树,问树上选三个互不相同的节点,使得这个三个点两两之间距离相等的方案数. 思路: 先考虑dpdpdp. fi,jf_{i,j}fi,j​表示iii子树中离 ...

  8. BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)

    题目好神仙--这个叫长链剖分的玩意儿更神仙-- 考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\ ...

  9. 蒟蒻的长链剖分学习笔记(例题:HOTEL加强版、重建计划)

    长链剖分学习笔记 说到树的链剖,大多数人都会首先想到重链剖分.的确,目前重链剖分在OI中有更加多样化的应用,但它大多时候是替代不了长链剖分的. 重链剖分是把size最大的儿子当成重儿子,顾名思义长链剖 ...

随机推荐

  1. 在java中怎样获得当前日期时间

    Calendar cal = Calendar.getInstance();    java.text.SimpleDateFormat sdf = new SimpleDateFormat(&quo ...

  2. pdf中内嵌字体问题

    在提交论文pdf到IEEE时总要检查字体是否为内嵌的,查看pdf中所有字体及是否内嵌可查看:http://sinme.blog.sohu.com/120043575.html. 具体做法是: 在pdf ...

  3. java 获取下一个字母(传大写返回大写,传小写返回小写)

    public static String getNextUpEn(String en){ char lastE = 'a'; char st = en.toCharArray()[0]; if(Cha ...

  4. array_filter、array_walk、array_map的区别

    <?php $arr=array( 1,2,3,4,5,6 ); function filter($var){ if($var%2==0) return true; } $data=array_ ...

  5. [转帖]SAP一句话入门:Human Resource

    SAP一句话入门:Human Resource http://blog.vsharing.com/MilesForce/A621279.html HR这一句话,太简单了:组织.招聘.发工资.任职.考勤 ...

  6. Handler主线程子线程之间的互相通信

    Handler主线程子线程之间的互相通信 package com.wyl.dansnote; import android.app.Activity; import android.os.Bundle ...

  7. Kettle转换工具Windows版安装

    一.简介 Kettle是一款国外开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行,绿色无需安装,数据抽取高效稳定. Kettle 中文名称叫水壶,该项目的主程序员MAT ...

  8. 好用的UI框架收集

    1. we-ui 专门为微信内网页和微信小程序设计的UI框架

  9. python数据结构与算法第三天【时间复杂度计算方法】

    最优时间复杂度(不可靠) 最坏时间复杂度(保证) 平均时间复杂度(平均状况) 不同语句的时间复杂度: (1)顺序语句:使用加法 (2)循环语句:使用乘法 (3)分支语句:使用坏时间复杂度 例如:如下代 ...

  10. 三、oneinstack

    一.介绍 oneinstack https://www.cnblogs.com/lxwphp/p/9231554.html