bzoj 1856
做这题之前先看道高考真题(好像是真题,我记不清了)
例:已知一个由n个0和n个1排列而成的数列,要求对于任意k∈N*且k∈[1,2n],在前k个数中1的个数不少于0的个数,求当n=4时这样的数列的数量。
解:14个(策略:暴力枚举,时间复杂度O(2^n))
所以本题其实就是对高考真题的一个一般化推广,首先扩大了n的范围,而且0的个数和1的个数可能不等了,所以这道题并不简单
我们通过打表可以发现:当n=m时,答案满足卡特兰数列,即
当n!=m呢?
再稍微打个表,答案就是
(我不会告诉你我没打出来这个表的)
接下来就好说了,预处理阶乘逆元然后计算组合数即可
但是为什么是这个公式呢?
我们稍微转化一下:将问题放到坐标系上,假设1代表向右上走,0代表向右下走,那么问题转化为了从(0,0)点到(n+m,n-m)点且不经过第四象限的方案数
那么如果完全统计方案数,答案即为
但是一定有一些是不合法的啊
那么如果是不合法的方案,这些不合法的路径一定会经过直线y=-1,那么我们将经过这条直线之前的所有点关于这条直线对称,会发现起点变成了(0,-2)!
于是问题转化为了从(0,-2)走到(n+m,n-m)的方案数
设向上走x步,向下走y步
则x+y=n+m,x-y=n-m+2
∴x=n+1,y=m-1
∴方案数即为
两者做差即可
解释如图。
当然,这题还有一些递推式,比如f[i][j]=f[i-1][j]+f[i][j-1],若i<j f[i][j]=0
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
#define mode 20100403
using namespace std;
ll inv[];
ll mul[];
ll n,m;
void init()
{
inv[]=inv[]=;
for(int i=;i<=n+m;i++)
{
inv[i]=(mode-mode/i)*inv[mode%i]%mode;
}
mul[]=mul[]=;
for(int i=;i<=n+m;i++)
{
inv[i]*=inv[i-];
inv[i]%=mode;
mul[i]=mul[i-]*i%mode;
}
}
ll C(ll x,ll y)
{
if(y>x)
{
return ;
}
return mul[x]*inv[y]%mode*inv[x-y]%mode;
}
int main()
{
// freopen("task.in","r",stdin);
// freopen("task.out","w",stdout);
scanf("%lld%lld",&n,&m);
init();
printf("%lld\n",((C(n+m,n)-C(n+m,n+))%mode+mode)%mode);
return ;
}
bzoj 1856的更多相关文章
- BZOJ 1856 字符串(组合)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1856 题意:有n个1和m个0组成的串,使得任意前k个中1的个数不少于0的个数.有多少种这 ...
- Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1194 Solved: 651[Submit][Status][ ...
- BZOJ 1856: [Scoi2010]字符串( 组合数 )
求(0,0)->(n,m)且在直线y=x下方(可以在y=x上)的方案数...同 http://www.cnblogs.com/JSZX11556/p/4908648.html --------- ...
- BZOJ 1856: [Scoi2010]字符串 [Catalan数]
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1418 Solved: 790[Submit][Status][ ...
- bzoj 1856: [Scoi2010]字符串 卡特兰数
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1458 Solved: 814[Submit][Status][ ...
- bzoj 1856 组合
这道题有些类似卡特兰数的其中一种证明,总方案数是c(n+m,n),点(m,n)对应y=x-1对称点为(n+1,m-1),所以答案为c(n+m,n)-c(n+m,n+1). 反思:开始坐标轴画错了,结果 ...
- bzoj 1856: [Scoi2010]字符串
#include<cstdio> #include<iostream> #define Q 20100403 ; int main() { scanf("%lld%l ...
- bzoj 1856 卡特兰数
复习了一下卡特兰数.. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #d ...
- 字符串(bzoj 1856)
Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...
随机推荐
- linux 软件包管理介绍
- Object的wait/notify/notifyAll&&Thread的sleep/yield/join/holdsLock
一.wait/notify/notifyAll都是Object类的实例方法 1.wait方法:阻塞当前线程等待notify/notifyAll方法的唤醒,或等待超时后自动唤醒. wait等待其实是对象 ...
- Exception:两个类具有相同的 XML 类型名称,请使用 @XmlType.name 和 @XmlType.namespace 为类分配不同的名称
具体报错: 找到报错的类: 对XmlType重新命名(最简单粗暴的方法):
- JDK源码笔记--Object
public final native Class<?> getClass(); public native int hashCode(); public boolean equals(O ...
- <TCP/IP>ICMP报文的分类
Internet控制报文协议,即为ICMP(Internet Control Message Protocal),用于主机,路由器之间传递信息,其目的是让我们能够检测网路的连线状况﹐也能确保连线的准确 ...
- 转-OWASP CSRFGuard使用细节
版权声明:不存在一劳永逸的技术 只存在不断学习的人.本文为博主原创文章,未经博主允许不得转载.交流联系QQ:1120121072 https://blog.csdn.net/u013474568/ar ...
- FreeSWITCH 增删模组
今天在尝试FreeSWITCH新功能时,遇到一个问题,就是该功能所需要的模组没有加载,导致写了好久的代码不能看到效果,让人很是忧伤啊! 再此,将FS模组增删的方法记录下,以方便遇到同样问题的童鞋. 具 ...
- 通信——基于Xmpp协议实现的聊天室
前段时间写了个自定义通信协议的聊天室(即用\r\n标记字符串,作为一句话),总感觉自己弄的那个协议实现虽然简单,但是拓展性就太差了,只适合于发送聊天的内容,难以包含更多的信息.基于上述几点,于是就开始 ...
- UVA 1395 MST
给你一个图, 求一个生成树, 边权Max – Min 要最小,输出最小值, 不能构成生成树的 输出 -1: 思路: Keuksal 算法, 先排序边, 然后枚举 第一条边, 往后加入边, 直到有 n- ...
- java8 lambda方法引用
注意引用方法的参数列表与返回值类型要与函数式接口中的抽象方法的参数列表与返回值类型保持一致 主要有三种语法格式: * * 对象::实例方法名 * * 类::静态方法名 * * 类::实例方法名 pub ...