bzoj 1856
做这题之前先看道高考真题(好像是真题,我记不清了)
例:已知一个由n个0和n个1排列而成的数列,要求对于任意k∈N*且k∈[1,2n],在前k个数中1的个数不少于0的个数,求当n=4时这样的数列的数量。
解:14个(策略:暴力枚举,时间复杂度O(2^n))
所以本题其实就是对高考真题的一个一般化推广,首先扩大了n的范围,而且0的个数和1的个数可能不等了,所以这道题并不简单
我们通过打表可以发现:当n=m时,答案满足卡特兰数列,即
当n!=m呢?
再稍微打个表,答案就是
(我不会告诉你我没打出来这个表的)
接下来就好说了,预处理阶乘逆元然后计算组合数即可
但是为什么是这个公式呢?
我们稍微转化一下:将问题放到坐标系上,假设1代表向右上走,0代表向右下走,那么问题转化为了从(0,0)点到(n+m,n-m)点且不经过第四象限的方案数
那么如果完全统计方案数,答案即为
但是一定有一些是不合法的啊
那么如果是不合法的方案,这些不合法的路径一定会经过直线y=-1,那么我们将经过这条直线之前的所有点关于这条直线对称,会发现起点变成了(0,-2)!
于是问题转化为了从(0,-2)走到(n+m,n-m)的方案数
设向上走x步,向下走y步
则x+y=n+m,x-y=n-m+2
∴x=n+1,y=m-1
∴方案数即为
两者做差即可
解释如图。
当然,这题还有一些递推式,比如f[i][j]=f[i-1][j]+f[i][j-1],若i<j f[i][j]=0
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
#define mode 20100403
using namespace std;
ll inv[];
ll mul[];
ll n,m;
void init()
{
inv[]=inv[]=;
for(int i=;i<=n+m;i++)
{
inv[i]=(mode-mode/i)*inv[mode%i]%mode;
}
mul[]=mul[]=;
for(int i=;i<=n+m;i++)
{
inv[i]*=inv[i-];
inv[i]%=mode;
mul[i]=mul[i-]*i%mode;
}
}
ll C(ll x,ll y)
{
if(y>x)
{
return ;
}
return mul[x]*inv[y]%mode*inv[x-y]%mode;
}
int main()
{
// freopen("task.in","r",stdin);
// freopen("task.out","w",stdout);
scanf("%lld%lld",&n,&m);
init();
printf("%lld\n",((C(n+m,n)-C(n+m,n+))%mode+mode)%mode);
return ;
}
bzoj 1856的更多相关文章
- BZOJ 1856 字符串(组合)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1856 题意:有n个1和m个0组成的串,使得任意前k个中1的个数不少于0的个数.有多少种这 ...
- Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1194 Solved: 651[Submit][Status][ ...
- BZOJ 1856: [Scoi2010]字符串( 组合数 )
求(0,0)->(n,m)且在直线y=x下方(可以在y=x上)的方案数...同 http://www.cnblogs.com/JSZX11556/p/4908648.html --------- ...
- BZOJ 1856: [Scoi2010]字符串 [Catalan数]
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1418 Solved: 790[Submit][Status][ ...
- bzoj 1856: [Scoi2010]字符串 卡特兰数
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1458 Solved: 814[Submit][Status][ ...
- bzoj 1856 组合
这道题有些类似卡特兰数的其中一种证明,总方案数是c(n+m,n),点(m,n)对应y=x-1对称点为(n+1,m-1),所以答案为c(n+m,n)-c(n+m,n+1). 反思:开始坐标轴画错了,结果 ...
- bzoj 1856: [Scoi2010]字符串
#include<cstdio> #include<iostream> #define Q 20100403 ; int main() { scanf("%lld%l ...
- bzoj 1856 卡特兰数
复习了一下卡特兰数.. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #d ...
- 字符串(bzoj 1856)
Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...
随机推荐
- JQ中的 offsetTop 和 offset().top 的区别
话不多说先上图: offset()的top是指元素与document的上边的距离,而不是浏览器当前窗体的上边缘,如图 document高度超过window,浏览器出现滚动条,滚动滚动条,提交按钮的of ...
- Java开发环境配置(3)--eclipse汉化插件安装、卸载 中遇到的问题
eclipse汉化中遇到的问题 网上汉化的帖子很多 如: Eclipse超级完美汉化教程_百度经验http://jingyan.baidu.com/article/e75057f28401a8ebc9 ...
- 请求神器 postman安装
1. 先下载postman(http://pan.baidu.com/s/1pLERz5p 密码:aqy2) 2.将你的包存放在文件夹中 列如名称为postman 3.在Chrome的地址栏中输入:c ...
- 小程序学习(冒泡,快速创建文件,以及tarbar)
1.关于小程序的事件冒泡机制 例如: <view catchtap="opp"> <text>当前内容</text> </view> ...
- OGG初始化之使用Oracle Data Pump加载数据
此方法使用Oracle Data Pump实用程序来建立目标数据.将副本应用于目标后,您将记录副本停止的SCN.包含在副本中的交易将被跳过以避免完整性违规冲突.从流程起点,Oracle GoldenG ...
- pytroch 0.3 到 0.4版本迁移资料mark
搜了一堆,还是官方资料给力,一份中文,一份英文,maek一下 https://www.pytorchtutorial.com/pytorch-0-4-0-migration-guide/ https: ...
- 【运维】虚拟机如何安装CentOS
Centos是Linux发行版本之一. 接下来说说,如何在虚拟机上面安装Centos 1,创建虚拟机的过程本文就不再赘述,相信读者可以自己探索出来. 2,创建好一个空白的虚拟机之后,会看到一个编辑虚拟 ...
- js中 && 和 || 的用法
js中的&& 和 || 一直以为是php那一套,上网查了一些资料,才发现不一样 a() && b() :如果执行a()后返回true,则执行b()并返回b的值:如果执行 ...
- linux shell 进阶篇、shell脚本编程-创建函数
使用函数 #!/bin/bash # testing the script function myfun { echo "This is an example of a function&q ...
- python类的使用
下面是一个员工类的创建及类对象的创建实例: #!/usr/bin/python # -*- coding: UTF-8 -*-class Employee: empCount = 0 def __in ...