做这题之前先看道高考真题(好像是真题,我记不清了)

例:已知一个由n个0和n个1排列而成的数列,要求对于任意k∈N*且k∈[1,2n],在前k个数中1的个数不少于0的个数,求当n=4时这样的数列的数量。

解:14个(策略:暴力枚举,时间复杂度O(2^n))

所以本题其实就是对高考真题的一个一般化推广,首先扩大了n的范围,而且0的个数和1的个数可能不等了,所以这道题并不简单

我们通过打表可以发现:当n=m时,答案满足卡特兰数列,即

当n!=m呢?

再稍微打个表,答案就是

(我不会告诉你我没打出来这个表的)

接下来就好说了,预处理阶乘逆元然后计算组合数即可

但是为什么是这个公式呢?

我们稍微转化一下:将问题放到坐标系上,假设1代表向右上走,0代表向右下走,那么问题转化为了从(0,0)点到(n+m,n-m)点且不经过第四象限的方案数

那么如果完全统计方案数,答案即为

但是一定有一些是不合法的啊

那么如果是不合法的方案,这些不合法的路径一定会经过直线y=-1,那么我们将经过这条直线之前的所有点关于这条直线对称,会发现起点变成了(0,-2)!

于是问题转化为了从(0,-2)走到(n+m,n-m)的方案数

设向上走x步,向下走y步

则x+y=n+m,x-y=n-m+2

∴x=n+1,y=m-1

∴方案数即为

两者做差即可

解释如图。

当然,这题还有一些递推式,比如f[i][j]=f[i-1][j]+f[i][j-1],若i<j f[i][j]=0

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
#define mode 20100403
using namespace std;
ll inv[];
ll mul[];
ll n,m;
void init()
{
inv[]=inv[]=;
for(int i=;i<=n+m;i++)
{
inv[i]=(mode-mode/i)*inv[mode%i]%mode;
}
mul[]=mul[]=;
for(int i=;i<=n+m;i++)
{
inv[i]*=inv[i-];
inv[i]%=mode;
mul[i]=mul[i-]*i%mode;
}
}
ll C(ll x,ll y)
{
if(y>x)
{
return ;
}
return mul[x]*inv[y]%mode*inv[x-y]%mode;
}
int main()
{
// freopen("task.in","r",stdin);
// freopen("task.out","w",stdout);
scanf("%lld%lld",&n,&m);
init();
printf("%lld\n",((C(n+m,n)-C(n+m,n+))%mode+mode)%mode);
return ;
}

bzoj 1856的更多相关文章

  1. BZOJ 1856 字符串(组合)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1856 题意:有n个1和m个0组成的串,使得任意前k个中1的个数不少于0的个数.有多少种这 ...

  2. Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][ ...

  3. BZOJ 1856: [Scoi2010]字符串( 组合数 )

    求(0,0)->(n,m)且在直线y=x下方(可以在y=x上)的方案数...同 http://www.cnblogs.com/JSZX11556/p/4908648.html --------- ...

  4. BZOJ 1856: [Scoi2010]字符串 [Catalan数]

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1418  Solved: 790[Submit][Status][ ...

  5. bzoj 1856: [Scoi2010]字符串 卡特兰数

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1458  Solved: 814[Submit][Status][ ...

  6. bzoj 1856 组合

    这道题有些类似卡特兰数的其中一种证明,总方案数是c(n+m,n),点(m,n)对应y=x-1对称点为(n+1,m-1),所以答案为c(n+m,n)-c(n+m,n+1). 反思:开始坐标轴画错了,结果 ...

  7. bzoj 1856: [Scoi2010]字符串

    #include<cstdio> #include<iostream> #define Q 20100403 ; int main() { scanf("%lld%l ...

  8. bzoj 1856 卡特兰数

    复习了一下卡特兰数.. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #d ...

  9. 字符串(bzoj 1856)

    Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...

随机推荐

  1. HDFS笔记(一)

    1. HDFS 是什么? Hadoop分布式文件系统(Distributed File System)-HDFS(Hadoop Distributed File System) 2. HDFS 架构 ...

  2. 存在Settings数据在手机系统中的位置

    旧版本Android,将settings数据存在数据库中,{system, secure, global} 对应的是 /data/data/com.android.providers.settings ...

  3. nginx 开启静态 gzip 配合 Vue 构建

    在站点配置添加如下代码: location ~* \.(css|js)$ { gzip_static on; } 这是 nginx 的静态 gzip功能,会自动查找对应扩展名的文件,如果存在 gzip ...

  4. ASP.NET MVC - WEB API

    ASP.NET WEB API 与WEB API有关的类型 HttpMessageHandler(System.Net.Http)(消息处理器) 表示Http请求的处理程序,处理程序类似于Http管道 ...

  5. Django中的缓存基础知识

    由于Django是动态网站,所有每次请求均会去数据进行相应的操作,当程序访问量大时,耗时必然会更加明显,最简单解决方式是使用:缓存,缓存将一个某个views的返回值保存至内存或者memcache中,5 ...

  6. string.Empty, "" 和 null 三者的区别

    转载:http://www.cnblogs.com/mxxblog/archive/2013/08/22/3275387.html 这是一个及其常见的问题,网上已经有关于这个问题的很多讨论.但是我觉得 ...

  7. Charles for MAC配置与使用

    Charles已成为网络接口数据抓取的利器之一,无论是作为开发人员还是测试人员,在实际开发及调试中都需要通过网络数据接口的抓取来进行数据正确性的验证及异常的排查.Charles抓取网络接口数据的原理就 ...

  8. 【转】Python的神奇方法指南

    [转]Python的神奇方法指南 有关Python内编写类的各种技巧和方法(构建和初始化.重载操作符.类描述.属性访问控制.自定义序列.反射机制.可调用对象.上下文管理.构建描述符对象.Picklin ...

  9. Pytorch 细节记录

    1. PyTorch进行训练和测试时指定实例化的model模式为:train/eval eg: class VAE(nn.Module): def __init__(self): super(VAE, ...

  10. python标准库之argparse

    argparse的使用 argparse 是 Python 内置的一个用于命令项选项与参数解析的模块,通过在程序中定义好我们需要的参数,argparse 将会从 sys.argv 中解析出这些参数,并 ...