Hive SQL基本上适用大数据领域离线数据处理的大部分场景。Hive SQL的优化也是我们必须掌握的技能,而且,面试一定会问。那么,我希望面试者能答出其中的80%优化点,在这个问题上才算过关。

  • Hive优化目标

    • 在有限的资源下,执行效率更高

  • 常见问题

    • 数据倾斜

    • map数设置

    • reduce数设置

    • 其他

    • Hive执行

      • HQL --> Job --> Map/Reduce

      • 执行计划

        • explain [extended] hql

        • 样例

        • select col,count(1) from test2 group by col;

        • explain select col,count(1) from test2 group by col;

    • Hive表优化

      • 分区

        • set hive.exec.dynamic.partition=true;

        • set hive.exec.dynamic.partition.mode=nonstrict;

        • 静态分区

        • 动态分区

      • 分桶

        • set hive.enforce.bucketing=true;

        • set hive.enforce.sorting=true;

      • 数据

        • 相同数据尽量聚集在一起

    • Hive Job优化

      • 并行化执行

        • 每个查询被hive转化成多个阶段,有些阶段关联性不大,则可以并行化执行,减少执行时间

        • set hive.exec.parallel= true;

        • set hive.exec.parallel.thread.numbe=8;

      • 本地化执行

        • job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB)

        • job的map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4)

        • job的reduce数必须为0或者1

        • set hive.exec.mode.local.auto=true;

        • 当一个job满足如下条件才能真正使用本地模式:

      • job合并输入小文件

        • set hive.input.format = org.apache.hadoop.hive.ql.io.CombineHiveInputFormat

        • 合并文件数由mapred.max.split.size限制的大小决定

      • job合并输出小文件

        • set hive.merge.smallfiles.avgsize=256000000;当输出文件平均小于该值,启动新job合并文件

        • set hive.merge.size.per.task=64000000;合并之后的文件大小

      • JVM重利用

        • set mapred.job.reuse.jvm.num.tasks=20;

        • JVM重利用可以使得JOB长时间保留slot,直到作业结束,这在对于有较多任务和较多小文件的任务是非常有意义的,减少执行时间。当然这个值不能设置过大,因为有些作业会有reduce任务,如果reduce任务没有完成,则map任务占用的slot不能释放,其他的作业可能就需要等待。

      • 压缩数据

        • set hive.exec.compress.output=true;

        • set mapred.output.compreession.codec=org.apache.hadoop.io.compress.GzipCodec;

        • set mapred.output.compression.type=BLOCK;

        • set hive.exec.compress.intermediate=true;

        • set hive.intermediate.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;

        • set hive.intermediate.compression.type=BLOCK;

        • 中间压缩就是处理hive查询的多个job之间的数据,对于中间压缩,最好选择一个节省cpu耗时的压缩方式

        • hive查询最终的输出也可以压缩

    • Hive Map优化

      • set mapred.map.tasks =10; 无效

      • (1)默认map个数

        • default_num=total_size/block_size;

      • (2)期望大小

        • goal_num=mapred.map.tasks;

      • (3)设置处理的文件大小

        • split_size=max(mapred.min.split.size,block_size);

        • split_num=total_size/split_size;

      • (4)计算的map个数

        • compute_map_num=min(split_num,max(default_num,goal_num))

      • 经过以上的分析,在设置map个数的时候,可以简答的总结为以下几点:

        • 增大mapred.min.split.size的值

        • 如果想增加map个数,则设置mapred.map.tasks为一个较大的值

        • 如果想减小map个数,则设置mapred.min.split.size为一个较大的值

        • 情况1:输入文件size巨大,但不是小文件

        • 情况2:输入文件数量巨大,且都是小文件,就是单个文件的size小于blockSize。这种情况通过增大mapred.min.split.size不可行,需要使用combineFileInputFormat将多个input path合并成一个InputSplit送给mapper处理,从而减少mapper的数量。

      • map端聚合

        • set hive.map.aggr=true;

      • 推测执行

        • mapred.map.tasks.apeculative.execution

    • Hive Shuffle优化

      • Map端

        • io.sort.mb

        • io.sort.spill.percent

        • min.num.spill.for.combine

        • io.sort.factor

        • io.sort.record.percent

      • Reduce端

        • mapred.reduce.parallel.copies

        • mapred.reduce.copy.backoff

        • io.sort.factor

        • mapred.job.shuffle.input.buffer.percent

        • mapred.job.shuffle.input.buffer.percent

        • mapred.job.shuffle.input.buffer.percent

    • Hive Reduce优化

      • 需要reduce操作的查询

        • group by,join,distribute by,cluster by...

        • order by比较特殊,只需要一个reduce

        • sum,count,distinct...

        • 聚合函数

        • 高级查询

      • 推测执行

        • mapred.reduce.tasks.speculative.execution

        • hive.mapred.reduce.tasks.speculative.execution

      • Reduce优化

        • numRTasks = min[maxReducers,input.size/perReducer]

        • maxReducers=hive.exec.reducers.max

        • perReducer = hive.exec.reducers.bytes.per.reducer

        • hive.exec.reducers.max 默认 :999

        • hive.exec.reducers.bytes.per.reducer 默认:1G

        • set mapred.reduce.tasks=10;直接设置

        • 计算公式

  • Hive查询操作优化

  • join优化

    • 关联操作中有一张表非常小

    • 不等值的链接操作

    • set hive.auto.current.join=true;

    • hive.mapjoin.smalltable.filesize默认值是25mb

    • select /*+mapjoin(A)*/ f.a,f.b from A t join B f on (f.a=t.a)

    • hive.optimize.skewjoin=true;如果是Join过程出现倾斜,应该设置为true

    • set hive.skewjoin.key=100000; 这个是join的键对应的记录条数超过这个值则会进行优化

    • mapjoin

    • 简单总结下,mapjoin的使用场景:

  • Bucket join

    • 两个表以相同方式划分桶

    • 两个表的桶个数是倍数关系

    • crete table order(cid int,price float) clustered by(cid) into 32 buckets;

    • crete table customer(id int,first string) clustered by(id) into 32 buckets;

    • select price from order t join customer s on t.cid=s.id

  • join 优化前

    • select m.cid,u.id from order m join customer u on m.cid=u.id where m.dt='2013-12-12';

  • join优化后

    • select m.cid,u.id from (select cid from order where dt='2013-12-12')m join customer u on m.cid=u.id;

  • group by 优化

    • hive.groupby.skewindata=true;如果是group by 过程出现倾斜 应该设置为true

    • set hive.groupby.mapaggr.checkinterval=100000;--这个是group的键对应的记录条数超过这个值则会进行优化

    • count distinct 优化

      • 优化前

        • select count(distinct id) from tablename

      • 优化后

        • select count(1) from (select distinct id from tablename) tmp;

        • select count(1) from (select id from tablename group by id) tmp;

      • 优化前

        • select a,sum(b),count(distinct c),count(distinct d) from test group by a

      • 优化后

        • select a,sum(b) as b,count(c) as c,count(d) as d from(select a,0 as b,c,null as d from test group by a,c union all select a,0 as b,null as c,d from test group by a,d union all select a,b,null as c,null as d from test)tmp1 group by a;

面试必备技能-HiveSQL优化的更多相关文章

  1. Java1.7的HashMap源码分析-面试必备技能

    HashMap是现在用的最多的map,HashMap的源码可以说是面试必备技能,今天我们试着分析一下jdk1.7下的源码. 先说结论:数组加链表 一.先看整体的数据结构 首先我们注意到数据是存放在一个 ...

  2. MySQL数据库之大厂面试必备技能v8.0.27

    概述 **本人博客网站 **IT小神 www.itxiaoshen.com 定义 MySQL官方地址 https://www.mysql.com/ MySQL 8系列最新版本为8.0.27,5系列的最 ...

  3. (转)面试必备技能:JDK动态代理给Spring事务埋下的坑!

    一.场景分析 最近做项目遇到了一个很奇怪的问题,大致的业务场景是这样的:我们首先设定两个事务,事务parent和事务child,在Controller里边同时调用这两个方法,示例代码如下: 1.场景A ...

  4. 面试必备技能:HashMap哪些技术点会被经常问到?

    1.为什么用数组+链表? 数组是用来确定桶的位置,利用元素的key的hash值对数组长度取模得到. 链表是用来解决hash冲突问题,当出现hash值一样的情形,就在数组上的对应位置形成一条链表.ps: ...

  5. SQL Server管理员必备技能之性能优化

    SQL Server管理员必备技能之性能优化 高文龙关注1人评论1171人阅读2017-09-22 08:27:41 SQL Server 作为企业必不可少的服务之一,所以对于管理员的日常运维是一个极 ...

  6. 详解linux运维工程师入门级必备技能

    详解linux运维工程师入门级必备技能 | 浏览:659 | 更新:2013-12-24 23:23 | 标签:linux it自动化运维就是要很方便的运用各种工具进行管理维护,有效的实施服务器保护 ...

  7. 自动化部署必备技能—部署yum仓库、定制rpm包

    部署yum仓库.定制rpm包 目录 第1章 扩展 - yum缓存 1.1 yum缓存使用步骤... 1 1.1.1 导言... 1 1.1.2 修改配置文件... 1 1.1.3 使用缓存... 1 ...

  8. 【转帖】系统软件工程师必备技能-进程内存的working set size(WSS)测量

    系统软件工程师必备技能-进程内存的working set size(WSS)测量 2018年12月28日 18:43:01 Linuxer_ 阅读数:145 https://blog.csdn.net ...

  9. 【面试必备】常见Java面试题大综合

    一.Java基础 1.Arrays.sort实现原理和Collections.sort实现原理答:Collections.sort方法底层会调用Arrays.sort方法,底层实现都是TimeSort ...

随机推荐

  1. 检索html页自生成&nasp;标签,并替换为空(即去掉空格)

    在开发过程中,遇到这样的一种情况,就是页面有时候不知道什么原因会自动生成一些元素,从而打乱自己原有的一些布局. 原html页源代码: 生成后的html源代码: 可以明显看出自动生成了很多   元素,现 ...

  2. 使用双引擎,让kbmmw 的客户端访问更方便

    前面我们一直都讲了如何使用kbmmw smarthttpservice 给客户端提供REST  服务.主要都是返回给 浏览器访问的,如果我们使用delphi 开发桌面应用,如何使用这些服务呢?其实一切 ...

  3. html/css 表格元素以及表格布局

    一,html之表格 1,一个完整的html表格所包含的元素 <!--一个完整的html表格--> <!--cellpadding代表单元格内的文字和单元格边框之间的间距--> ...

  4. Windows多线程学习随笔

    自学Windows多线程知识,例程如下: #include <iostream> #include <windows.h> #include <process.h> ...

  5. java操作FTP的一些工具方法

    java操作FTP还是很方便的,有多种开源支持,这里在apache开源的基础上自己进行了一些设计,使用起来更顺手和快捷. 思路: 1.设计FTPHandler接口,可以对ftp,sftp进行统一操作, ...

  6. python脚本在linux下的执行

    假设现有一篇待执行的python脚本test.py python脚本在linux下面执行有两种方式: 打开Linux终端,输入 python test.py 在test.py脚本第一行添加声明 #!/ ...

  7. Unity跳转场景

    Unity中如何加载场景 1.首先需要将场景添加到 Build Settings中,如下图: 2.引用using UnityEngine.SceneManagement; 同步加载:如果场景很大,有可 ...

  8. 解决maven在build时下载文件卡死问题

    1.停止build 2.cd ~/.m2/repository 3.在这个目录下找到你要下载的文件,然后查看是否有个同名文件带一个.lock后缀 4.rm -f   xxxx.lock 5.重新bui ...

  9. socket的阻塞与非阻塞,同步与非同步

    网络编程中通常提到四种方式,同步/异步,阻塞/非阻塞.以下对它们的概念进行总结 1.同步/异步:主要针对C端 同步:所谓同步,就是在C端发出一个功能调用时,在没有得到结果之前,调用不返回,也就是必须一 ...

  10. Python中用random产生随机数的用法

    >>>random.randomrandom.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 >>>random.unifo ...